1 resultado para NEGATIVE FEEDBACK
em Universidad de Alicante
Filtro por publicador
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (4)
- Aston University Research Archive (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (50)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (6)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (11)
- Brock University, Canada (24)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (198)
- Cochin University of Science & Technology (CUSAT), India (5)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (33)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (6)
- Deposito de Dissertacoes e Teses Digitais - Portugal (1)
- Digital Archives@Colby (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (10)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (18)
- Duke University (2)
- Georgian Library Association, Georgia (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Institute of Public Health in Ireland, Ireland (2)
- Instituto Gulbenkian de Ciência (2)
- Instituto Politécnico do Porto, Portugal (8)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (11)
- Martin Luther Universitat Halle Wittenberg, Germany (3)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (19)
- National Center for Biotechnology Information - NCBI (26)
- Nottingham eTheses (2)
- Publishing Network for Geoscientific & Environmental Data (17)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (5)
- Repositório da Produção Científica e Intelectual da Unicamp (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (9)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (16)
- School of Medicine, Washington University, United States (5)
- Scielo Saúde Pública - SP (64)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (2)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (3)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (9)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (183)
- Université de Montréal, Canada (21)
- University of Michigan (1)
- University of Queensland eSpace - Australia (45)
- University of Southampton, United Kingdom (30)
- University of Washington (1)
Resumo:
Complex systems in causal relationships are known to be circular rather than linear; this means that a particular result is not produced by a single cause, but rather that both positive and negative feedback processes are involved. However, although interpreting systemic interrelationships requires a language formed by circles, this has only been developed at the diagram level, and not from an axiomatic point of view. The first difficulty encountered when analysing any complex system is that usually the only data available relate to the various variables, so the first objective was to transform these data into cause-and-effect relationships. Once this initial step was taken, our discrete chaos theory could be applied by finding the causal circles that will form part of the system attractor and allow their behavior to be interpreted. As an application of the technique presented, we analyzed the system associated with the transcription factors of inflammatory diseases.