7 resultados para Multi-scale place recognition
em Universidad de Alicante
Resumo:
Many studies suggest that migratory birds are expected to travel more quickly during spring, when they are en route to the breeding grounds, in order to ensure a high-quality territory. Using data recorded by means of Global Positioning System satellite tags, we analysed at three temporal scales (hourly, daily and overall journey) seasonal differences in migratory performance of the booted eagle (Aquila pennata), a soaring raptor migrating between Europe and tropical Africa, taking into account environmental conditions such as wind, thermal uplift and day length. Unexpectedly, booted eagles showed higher travel rates (hourly speed, daily distance, overall migration speed and overall straightness) during autumn, even controlling for abiotic factors, probably thanks to higher hourly speeds, more straight routes and less non-travelling days during autumn. Tailwinds were the main environmental factor affecting daily distance. During spring, booted eagles migrated more quickly when flying over the Sahara desert. Our results raise new questions about which ecological and behavioural reasons promote such unexpected faster speeds in autumn and not during spring and how events occurring in very different regions can affect migratory performance, interacting with landscape characteristics, weather conditions and flight behaviour.
Resumo:
Day of Chemistry, Invited conference, San Alberto Magno 2014
Resumo:
Multi-sensor advanced DInSAR analyses have been performed and compared with two GPS station measurements, in order to evaluate the land subsidence evolution in a 20-year period, in the Alto Guadalentín Basin where the highest rate of man-induced subsidence (> 10 cm yr−1) of Europe had been detected. The control mechanisms have been examined comparing the advanced DInSAR data with conditioning and triggering factors (i.e. isobaths of Plio-Quaternary deposits, soft soil thickness and piezometric level).
Resumo:
In this paper, a multimodal and interactive prototype to perform music genre classification is presented. The system is oriented to multi-part files in symbolic format but it can be adapted using a transcription system to transform audio content in music scores. This prototype uses different sources of information to give a possible answer to the user. It has been developed to allow a human expert to interact with the system to improve its results. In its current implementation, it offers a limited range of interaction and multimodality. Further development aimed at full interactivity and multimodal interactions is discussed.
Resumo:
Society today is completely dependent on computer networks, the Internet and distributed systems, which place at our disposal the necessary services to perform our daily tasks. Subconsciously, we rely increasingly on network management systems. These systems allow us to, in general, maintain, manage, configure, scale, adapt, modify, edit, protect, and enhance the main distributed systems. Their role is secondary and is unknown and transparent to the users. They provide the necessary support to maintain the distributed systems whose services we use every day. If we do not consider network management systems during the development stage of distributed systems, then there could be serious consequences or even total failures in the development of the distributed system. It is necessary, therefore, to consider the management of the systems within the design of the distributed systems and to systematise their design to minimise the impact of network management in distributed systems projects. In this paper, we present a framework that allows the design of network management systems systematically. To accomplish this goal, formal modelling tools are used for modelling different views sequentially proposed of the same problem. These views cover all the aspects that are involved in the system; based on process definitions for identifying responsible and defining the involved agents to propose the deployment in a distributed architecture that is both feasible and appropriate.
Resumo:
Prototype Selection (PS) algorithms allow a faster Nearest Neighbor classification by keeping only the most profitable prototypes of the training set. In turn, these schemes typically lower the performance accuracy. In this work a new strategy for multi-label classifications tasks is proposed to solve this accuracy drop without the need of using all the training set. For that, given a new instance, the PS algorithm is used as a fast recommender system which retrieves the most likely classes. Then, the actual classification is performed only considering the prototypes from the initial training set belonging to the suggested classes. Results show that this strategy provides a large set of trade-off solutions which fills the gap between PS-based classification efficiency and conventional kNN accuracy. Furthermore, this scheme is not only able to, at best, reach the performance of conventional kNN with barely a third of distances computed, but it does also outperform the latter in noisy scenarios, proving to be a much more robust approach.
Resumo:
Sensing techniques are important for solving problems of uncertainty inherent to intelligent grasping tasks. The main goal here is to present a visual sensing system based on range imaging technology for robot manipulation of non-rigid objects. Our proposal provides a suitable visual perception system of complex grasping tasks to support a robot controller when other sensor systems, such as tactile and force, are not able to obtain useful data relevant to the grasping manipulation task. In particular, a new visual approach based on RGBD data was implemented to help a robot controller carry out intelligent manipulation tasks with flexible objects. The proposed method supervises the interaction between the grasped object and the robot hand in order to avoid poor contact between the fingertips and an object when there is neither force nor pressure data. This new approach is also used to measure changes to the shape of an object’s surfaces and so allows us to find deformations caused by inappropriate pressure being applied by the hand’s fingers. Test was carried out for grasping tasks involving several flexible household objects with a multi-fingered robot hand working in real time. Our approach generates pulses from the deformation detection method and sends an event message to the robot controller when surface deformation is detected. In comparison with other methods, the obtained results reveal that our visual pipeline does not use deformations models of objects and materials, as well as the approach works well both planar and 3D household objects in real time. In addition, our method does not depend on the pose of the robot hand because the location of the reference system is computed from a recognition process of a pattern located place at the robot forearm. The presented experiments demonstrate that the proposed method accomplishes a good monitoring of grasping task with several objects and different grasping configurations in indoor environments.