3 resultados para Motion study

em Universidad de Alicante


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tide gauge (TG) data along the northern Mediterranean and Black Sea coasts are compared to the sea-surface height (SSH) anomaly obtained from ocean altimetry (TOPEX/Poseidon and ERS-1/2) for a period of nine years (1993–2001). The TG measures the SSH relative to the ground whereas the altimetry does so with respect to the geocentric reference frame; therefore their difference would be in principle a vertical ground motion of the TG sites, though there are different error sources for this estimate as is discussed in the paper. In this study we estimate such vertical ground motion, for each TG site, from the slope of the SSH time series of the (non-seasonal) difference between the TG record and the altimetry measurement at a point closest to the TG. Where possible, these estimates are further compared with those derived from nearby continuous Global Positioning System (GPS) data series. These results on vertical ground motion along the Mediterranean and Black Sea coasts provide useful source data for studying, contrasting, and constraining tectonic models of the region. For example, in the eastern coast of the Adriatic Sea and in the western coast of Greece, a general subsidence is observed which may be related to the Adriatic lithosphere subducting beneath the Eurasian plate along the Dinarides fault.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Women’s handball is a sport, which has seen an accelerated development over the last decade. Data on movement patterns in combination with physiological demands are nearly nonexistent in the literature. The aim of this study was twofold: first, to analyze the horizontal movement pattern, including the sprint acceleration profiles, of individual female elite handball players and the corresponding heart rates (HRs) during a match and secondly to determine underlying correlations with individual aerobic performance. Players from one German First League team (n = 11) and the Norwegian National Team (n = 14) were studied during one match using the Sagit system for movement analysis and Polar HR monitoring for analysis of physiological demands. Mean HR during the match was 86 % of maximum HR (HRmax). With the exception of the goalkeepers (GKs, 78 % of HRmax), no position-specific differences could be detected. Total distance covered during the match was 4614 m (2066 m in GKs and 5251 m in field players (FPs)). Total distance consisted of 9.2 % sprinting, 26.7 % fast running, 28.8 % slow running, and 35.5 % walking. Mean velocity varied between 1.9 km/h (0.52 m/s) (GKs) and 4.2 km/h (1.17 m/s) (FPs, no position effect). Field players with a higher level of maximum oxygen uptake (V̇O2max) executed run activities with a higher velocity but comparable percentage of HRmax as compared to players with lower aerobic performance, independent of FP position. Acceleration profile depended on aerobic performance and the field player’s position. In conclusion, a high V̇O2max appears to be important in top-level international women’s handball. Sprint and endurance training should be conducted according to the specific demands of the player’s position.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A twenty-year period of severe land subsidence evolution in the Alto Guadalentín Basin (southeast Spain) is monitored using multi-sensor SAR images, processed by advanced differential interferometric synthetic aperture radar (DInSAR) techniques. The SAR images used in this study consist of four datasets acquired by ERS-1/2, ENVISAT, ALOS and COSMO-SkyMed satellites between 1992 and 2012. The integration of ground surface displacement maps retrieved for different time periods allows us to quantify up to 2.50 m of cumulated displacements that occurred between 1992 and 2012 in the Alto Guadalentín Basin. DInSAR results were locally compared with global positioning system (GPS) data available for two continuous stations located in the study area, demonstrating the high consistency of local vertical motion measurements between the two different surveying techniques. An average absolute error of 4.6 ± 4 mm for the ALOS data and of 4.8 ± 3.5 mm for the COSMO-SkyMed data confirmed the reliability of the analysis. The spatial analysis of DInSAR ground surface displacement reveals a direct correlation with the thickness of the compressible alluvial deposits. Detected ground subsidence in the past 20 years is most likely a consequence of a 100–200 m groundwater level drop that has persisted since the 1970s due to the overexploitation of the Alto Guadalentín aquifer system. The negative gradient of the pore pressure is responsible for the extremely slow consolidation of a very thick (> 100 m) layer of fine-grained silt and clay layers with low vertical hydraulic permeability (approximately 50 mm/h) wherein the maximum settlement has still not been reached.