2 resultados para Morocco--Biography
em Universidad de Alicante
Resumo:
A hydrological–economic model is introduced to describe the dynamics of groundwater-dependent economics (agriculture and tourism) for sustainable use in sparse-data drylands. The Amtoudi Oasis, a remote area in southern Morocco, in the northern Sahara attractive for tourism and with evidence of groundwater degradation, was chosen to show the model operation. Governing system variables were identified and put into action through System Dynamics (SD) modeling causal diagrams to program basic formulations into a model having two modules coupled by the nexus ‘pumping’: (1) the hydrological module represents the net groundwater balance (G) dynamics; and (2) the economic module reproduces the variation in the consumers of water, both the population and tourists. The model was operated under similar influx of tourists and different scenarios of water availability, such as the wet 2009–2010 and the average 2010–2011 hydrological years. The rise in international tourism is identified as the main driving force reducing emigration and introducing new social habits in the population, in particular concerning water consumption. Urban water allotment (PU) was doubled for less than a 100-inhabitant net increase in recent decades. The water allocation for agriculture (PI), the largest consumer of water, had remained constant for decades. Despite that the 2-year monitoring period is not long enough to draw long-term conclusions, groundwater imbalance was reflected by net aquifer recharge (R) less than PI + PU (G < 0) in the average year 2010–2011, with net lateral inflow from adjacent Cambrian formations being the largest recharge component. R is expected to be much less than PI + PU in recurrent dry spells. Some low-technology actions are tentatively proposed to mitigate groundwater degradation, such as: wastewater capture, treatment, and reuse for irrigation; storm-water harvesting for irrigation; and active maintenance of the irrigation system to improve its efficiency.
Resumo:
Medieval fortified granaries known as “agadirs” are very common in southern Morocco, being catalogued as world cultural heritage by United Nations. These Berber buildings (made of stones and tree trunks) usually located on rocky promontories, constitute historical testimonials related to the origin of Morocco, and, as tourist attractions, have a positive impact on the local economy. The sustainability of these ancient monuments requires geological-risk evaluations of the massif stability under the agadir with the proposal of stabilization measures, and an architectonic analysis with appropriate maintenance of the structural elements. An interdisciplinary study including climate, seismicity, hydrology, geology, geomorphology, geotechnical surveys of the massif, and diagnosis of the degradation of structural elements have been performed on the Amtoudi Agadir, selected as a case study. The main findings from this study are that the prevalent rocks used for construction (coming from the underlying substratum) are good-quality arkosic sandstones; the SW cliffs under the agadir are unstable under water saturation; some masonry walls are too thin and lack interlocking stones and mortar; and failures in the beams (due to flexure, fracture, and exhaustion in the resistance due to insect attacks or plant roots) are common. The basic risk assessment of ancient buildings of cultural heritage and their geologic substratum are needed especially in undeveloped areas with limited capacity to implement durable conservation policies. Therefore, recommendations have been provided to ensure the stability and maintenance of this important archaeological site.