2 resultados para Modeling technique
em Universidad de Alicante
Resumo:
Purpose – The purpose of this paper is to analyze the internalization of quality management (QM) on the basis of quality certifiable standards – also referred to as meta-standards – in service organizations. More specifically, the paper analyzes the case of the internalization of a quality standard in the Spanish hotel industry. Design/methodology/approach – The paper examines the relationships between the measures of internalization, benefit, QM tools and motivation, using partial least squares in the framework of the structural equation modeling technique. Findings – The results show that the hotels that have internalized the standard to a greater extent are more likely to be driven by internal motivation, develop more QM tools and achieve greater benefits than the hotels with a lower degree of internalization. Originality/value – As previous studies have examined these issues in relation to the internalization of ISO standards, the present study adds to this important stream of research and contributes by advancing the understanding of these issues through the case of a specific standard for the hotel industry.
Resumo:
Determination of reliable solute transport parameters is an essential aspect for the characterization of the mechanisms and processes involved in solute transport (e.g., pesticides, fertilizers, contaminants) through the unsaturated zone. A rapid inexpensive method to estimate the dispersivity parameter at the field scale is presented herein. It is based on the quantification by the X-ray fluorescence solid-state technique of total bromine in soil, along with an inverse numerical modeling approach. The results show that this methodology is a good alternative to the classic Br− determination in soil water by ion chromatography. A good agreement between the observed and simulated total soil Br is reported. The results highlight the potential applicability of both combined techniques to infer readily solute transport parameters under field conditions.