17 resultados para Mixed oxides. Combustion by microwave. Alternatives fuels

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to study the activities of ceria–zirconia and copper/ceria–zirconia catalysts, comparing with a commercial platinum/alumina catalyst, for soot combustion reaction under different gas atmospheres and loose contact mode (simulating diesel exhaust conditions), in order to analyse the kinetics and to deduce mechanistic implications. Activity tests were performed under isothermal and TPR conditions. The NO oxidation to NO2 was studied as well. It was checked that mass transfer limitations were not influencing the rate measurements. Global activation energies for the catalysed and non-catalysed soot combustion were calculated and properly discussed. The results reveal that ceria-based catalysts greatly enhance their activities under NOx/O2 between 425 °C and 450 °C, due to the “active oxygen”-assisted soot combustion. Remarkably, copper/ceria–zirconia shows a slightly higher soot combustion rate than the Pt-based catalyst (under NOx/O2, at 450 °C).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ce0.64Zr0.27Nd0.09Oδ mixed oxides have been prepared by three different methods (nitrates calcination, coprecipitation and microemulsion), characterized by N2 adsorption, XRD, H2-TPR, Raman spectroscopy and XPS, and tested for soot combustion in NOx/O2. The catalyst prepared by microemulsion method is the most active one, which is related to its high surface area (147 m2/g) and low crystallite size (6 nm), and the lowest activity was obtained with the catalyst prepared by coprecipitation (74 m2/g; 9 nm). The catalyst prepared by nitrates precursors calcination is slightly less active to that prepared by microemulsion, but the synthesis procedure is very straightforward and surfactants or other chemicals are not required, being very convenient for scaling up and practical utilization. The high activity of the catalyst prepared by nitrates calcination can be attributed to the better introduction of Nd cations into the parent ceria framework than on catalysts prepared by coprecipitation and microemulsion, which promotes the creation of more oxygen vacancies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resumen del póster presentado en PIC2015 – the 14th International Congress on Combustion By-Products and Their Health Effects, Umeå, Sweden, 14-17 June 2015.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aryl imidazol-1-ylsulfonates have been efficiently cross-coupled with aryl-, alkyl-, and silylacetylenes in neat water under copper-free conditions at 110 °C assisted by microwave irradiation. Using 0.5 mol% of an oxime palladacycle as precatalyst, 2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl (SPhos, 2 mol%) as ligand, hexadecyltrimethylammonium bromide (CTAB) as additive, and triethylamine (TEA) as base, a wide array of disubstituted alkynes has been prepared in good to high yields in only 30 min.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of CeO2–Nb2O5 mixed oxides with different Nb content, as well as the pure oxides, have been synthesized by co-precipitation with excess urea. These materials have been used as supports for platinum catalysts, with [Pt(NH3)4](NO3)2 as precursor. Both supports and catalysts have been characterized by several techniques: N2 physisorption at 77 K, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, UV–vis spectroscopy, scanning electron microscopy, transmission electron microscopy, temperature-programmed reduction and temperature-programmed desorption (CO and H2), and their catalytic behaviour has been determined in the PROX reaction, both with an ideal gas mixture (CO, O2 and H2) and in simulated reformate gas containing CO2 and H2O. Raman spectroscopy analysis has shown the likely substitution of some Ce4+ cations by Nb5+ to some extent in supports with low niobium contents. Moreover, the presence of Nb in the supports hinders their ability to adsorb CO and to oxidize it to CO2. However, an improvement of the catalytic activity for CO oxidation is obtained by adding Nb to the support, although the Pt/Nb2O5 catalyst shows very low activity. The best results are found with the Pt/0.7CeO2–0.3Nb2O5 catalyst, which shows a high CO conversion (85%) and a high yield (around 0.6) after a reduction treatment at 523 K. The effect of the presence of CO2 and H2O in the feed has also been determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resumen de la comunicación presentada en PIC2015 – the 14th International Congress on Combustion By-Products and Their Health Effects, Umeå, Sweden, 14-17 June 2015.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Lomb periodogram has been traditionally a tool that allows us to elucidate if a frequency turns out to be important for explaining the behaviour of a given time series. Many linear and nonlinear reiterative harmonic processes that are used for studying the spectral content of a time series take into account this periodogram in order to avoid including spurious frequencies in their models due to the leakage problem of energy from one frequency to others. However, the estimation of the periodogram requires long computation time that makes the harmonic analysis slower when we deal with certain time series. Here we propose an algorithm that accelerates the extraction of the most remarkable frequencies from the periodogram, avoiding its whole estimation of the harmonic process at each iteration. This algorithm allows the user to perform a specific analysis of a given scalar time series. As a result, we obtain a functional model made of (1) a trend component, (2) a linear combination of Fourier terms, and (3) the so-called mixed secular terms by reducing the computation time of the estimation of the periodogram.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supported iron oxide nanoparticles have been incorporated onto hierarchical zeolites by microwave-assisted impregnation and mechanochemical grinding. Nanoparticle-functionalised porous zeolites were characterised by a number of analytical techniques such as XRD, N2 physisorption, TEM, and surface acidity measurements. The catalytic activities of the synthesised nanomaterials were investigated in an alkylation reaction. The results pointed to different species with varying acidity and accessibility in the materials, which provided essentially different catalytic activities in the alkylation of toluene with benzyl chloride under microwave irradiation, selected as the test reaction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A Ce0.5Pr0.5O2 mixed oxide has been prepared with the highest surface area and smallest particle size ever reported (125 m2/g and 7 nm, respectively), also being the most active diesel soot combustion catalyst ever tested under realistic conditions if catalysts forming highly volatile species are ruled out. This Ce–Pr mixed oxide is even more active than a reference platinum-based commercial catalyst. This study provides an example of the efficient participation of oxygen species released by a ceria catalyst in a heterogeneous catalysis reaction where both the catalyst and one of the reactants (soot) are solids. It has been concluded that both the ceria-based catalyst composition (nature and amount of dopant) and the particle size play key roles in the combustion of soot through the active oxygen-based mechanism. The composition determines the production of active oxygen and the particle size the transfer of such active oxygen species from catalyst to soot.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Four different catalysts (Pt/Al2O3, Ce0.8Zr0.2O2, PrO2−x and SrTiCuO3) have been investigated on a laboratory scale to evaluate their potential as diesel soot combustion catalysts under different experimental conditions, which simulate the situation found in a continuous regeneration technology trap (dual-bed configuration of catalyst and soot) or a catalyst-coated filter system (single-bed configuration, both catalyst and soot particles mixed under loose-contact mode). Under dual-bed configuration, the behavior of the catalysts towards soot combustion are very similar, despite the differences observed in the NO2 production profiles. However, under single-bed configuration, there are important differences in the soot combustion activities and in the NO2 slip profiles. The configurations chosen have an enormous impact on CO/(CO + CO2) ratios of combustion products as well. The most active catalyst under NOx + O2 is PrO2−x combining a high contribution of active oxygen-assisted soot combustion as well as high NO2 production activity along the catalytic bed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Catalytically active heterogeneous catalysts have been prepared via microwave deposition of iron oxide nanoparticles (0.5–1.2 wt%) on MCM-41 type silica materials with different morphologies (particles, helical and spheres). This methodology leads to iron oxide nanoparticles composed by a mixture of FeO and Fe2O3 species, being the Fe(II)/Fe(III) peak ratio near to 1.11 by XPS. DRUV spectroscopy indicates the presence of tetrahedral coordinated Fe3+ in the silica framework of the three catalysts as well as some extraframework iron species in the catalysts with particle and sphere-like morphologies. The loading of the nanoparticles does neither affect the mesopore arrangement nor the textural properties of the silica supports, as indicated by SAXS and nitrogen adsorption/desorption isotherms. A detailed investigation of the morphology of the supports in various microwave-assisted catalyzed processes shows that helical mesostructures provide optimum catalytic activities and improved reusabilities in the microwave-assisted redox (selective oxidation of benzyl alcohol) catalyzed process probably due to a combination of lower particle size and higher acidity in comparison with the supports with particle and sphere morphology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two microporous hectorites were prepared by conventional and microwave heating, and a delaminated mesoporous hectorite by an ultrasound-assisted synthesis. These three hectorites were impregnated with copper. The characterization techniques used were XRD, N2 adsorption, TEM and H2 reduction after selective surface copper oxidation by N2O (to determine copper dispersion). The catalytic activity for soot combustion of the copper-free and the copper-containing hectorites was tested under a gas mixture of 500 ppm NOx/5% O2/N2 (and 5% O2/N2 in some cases), evaluating their stability through three consecutive soot combustion experiments. The delaminated hectorite showed the highest surface area (353 m2/g) allowing the highest dispersion of copper. This copper-containing catalyst was the most active for soot combustion among those prepared and tested in this study. We have also concluded that the Cu/hectorite-catalyzed soot combustion mechanism is based on the activation of the O2 molecule and not on the NO2-assisted soot combustion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The constant increase in the production of electronic devices implies the need for an appropriate management of a growing number of waste electrical and electronic equipment. Thermal treatments represent an interesting alternative to recycle this kind of waste, but particular attention has to be paid to the potential emissions of toxic by-products. In this study, the emissions from thermal degradation of printed circuit boards (with and without metals) have been studied using a laboratory scale reactor, under oxidizing and inert atmosphere at 600 and 850 °C. Apart from carbon oxides, HBr was the main decomposition product, followed by high amounts of methane, ethylene, propylene, phenol and benzene. The maximum formation of PAHs was found in pyrolysis at 850 °C, naphthalene being the most abundant. High levels of 2-, 4-, 2,4-, 2,6- and 2,4,6-bromophenols were found, especially at 600 °C. Emissions of PCDD/Fs and dioxin-like PCBs were quite low and much lower than that of PBDD/Fs, due to the higher bromine content of the samples. Combustion at 600 °C was the run with the highest PBDD/F formation: the total content of eleven 2,3,7,8-substituted congeners (tetra- through heptaBDD/Fs) was 7240 and 3250 ng WHO2005-TEQ/kg sample, corresponding to the sample with and without metals, respectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The synthesis of nano-sized ZIF-11 with an average size of 36 ± 6 nm is reported. This material has been named nano-zeolitic imidazolate framework-11 (nZIF-11). It has the same chemical composition and thermal stability and analogous H2 and CO2 adsorption properties to the conventional microcrystalline ZIF-11 (i.e. 1.9 ± 0.9 μm). nZIF-11 has been obtained following the centrifugation route, typically used for solid separation, as a fast new technique (pioneering for MOFs) for obtaining nanomaterials where the temperature, time and rotation speed can easily be controlled. Compared to the traditional synthesis consisting of stirring + separation, the reaction time was lowered from several hours to a few minutes when using this centrifugation synthesis technique. Employing the same reaction time (2, 5 or 10 min), micro-sized ZIF-11 was obtained using the traditional synthesis while nano-scale ZIF-11 was achieved only by using centrifugation synthesis. The small particle size obtained for nZIF-11 allowed the use of the wet MOF sample as a colloidal suspension stable in chloroform. This helped to prepare mixed matrix membranes (MMMs) by direct addition of the membrane polymer (polyimide Matrimid®) to the colloidal suspension, avoiding particle agglomeration resulting from drying. The MMMs were tested for H2/CO2 separation, improving the pure polymer membrane performance, with permeation values of 95.9 Barrer of H2 and a H2/CO2 separation selectivity of 4.4 at 35 °C. When measured at 200 °C, these values increased to 535 Barrer and 9.1.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

H– and Na–saponite supports have been prepared by several synthesis approaches. 5% Cu/saponite catalysts have been prepared and tested for soot combustion in a NOx + O2 + N2 gas flow and with soot and catalyst mixed in loose contact mode. XRD, FT-IR, N2 adsorption and TEM characterization results revealed that the use of either surfactant or microwaves during the synthesis led to delamination of the saponite support, yielding high surface area and small crystallite size materials. The degree of delamination affected further copper oxide dispersion and soot combustion capacity of the Cu/saponite catalysts. All Cu/saponite catalysts were active for soot combustion, and the NO2-assisted mechanism seemed to prevail. The best activity was achieved with copper oxide supported on a Na–saponite prepared at pH 13 and with surfactant. This best activity was attributed to the efficient copper oxide dispersion on the high surface area delaminated saponite (603 m2 g−1) and to the presence of Na. Copper oxide reduction in H2-TPR experiments occurred at lower temperature for the Na-containing catalysts than for the H-containing counterparts, and all Cu/Na–saponite catalysts were more active for soot combustion than the corresponding Cu/H–saponite catalysts.