7 resultados para Metal-insulator-transition

em Universidad de Alicante


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The volume size of a converging wave, which plays a relevant role in image resolution, is governed by the wavelength of the radiation and the numerical aperture (NA) of the wavefront. We designed an ultrathin (λ/8 width) curved metasurface that is able to transform a focused field into a high-NA optical architecture, thus boosting the transverse and (mainly) on-axis resolution. The elements of the metasurface are metal-insulator subwavelength gratings exhibiting extreme anisotropy with ultrahigh index of refraction for TM polarization. Our results can be applied to nanolithography and optical microscopy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Here, we present experimental and computational evidences to support that rocksalt cubic VO is a strongly correlated metal with non-Fermi-liquid thermodynamics and an unusually strong spin-lattice coupling. An unexpected change of sign of metallic thermopower with composition is tentatively ascribed to the presence of a pseudogap in the density of states. These properties are discussed as signatures of the proximity to a magnetic quantum phase transition. The results are summarized in an electronic phase diagram for the 3d monoxides, which resembles that of other strongly correlated systems. The structural and electronic simplicity of 3d monoxides makes them ideal candidates to progress in the understanding of highly correlated electron systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study the conduction band spin splitting that arises in transition metal dichalcogenide (TMD) semiconductor monolayers such as MoS2, MoSe2, WS2, and WSe2 due to the combination of spin-orbit coupling and lack of inversion symmetry. Two types of calculation are done. First, density functional theory (DFT) calculations based on plane waves that yield large splittings, between 3 and 30 meV. Second, we derive a tight-binding model that permits to address the atomic origin of the splitting. The basis set of the model is provided by the maximally localized Wannier orbitals, obtained from the DFT calculation, and formed by 11 atomiclike orbitals corresponding to d and p orbitals of the transition metal (W, Mo) and chalcogenide (S, Se) atoms respectively. In the resulting Hamiltonian, we can independently change the atomic spin-orbit coupling constant of the two atomic species at the unit cell, which permits to analyze their contribution to the spin splitting at the high symmetry points. We find that—in contrast to the valence band—both atoms give comparable contributions to the conduction band splittings. Given that these materials are most often n-doped, our findings are important for developments in TMD spintronics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study the nature of spin excitations of individual transition metal atoms (Ti, V, Cr, Mn, Fe, Co, and Ni) deposited on a Cu2N/Cu(100) surface using both spin-polarized density functional theory (DFT) and exact diagonalization of an Anderson model derived from DFT. We use DFT to compare the structural, electronic, and magnetic properties of different transition metal adatoms on the surface. We find that the average occupation of the transition metal d shell, main contributor to the magnetic moment, is not quantized, in contrast with the quantized spin in the model Hamiltonians that successfully describe spin excitations in this system. In order to reconcile these two pictures, we build a zero bandwidth multi-orbital Anderson Hamiltonian for the d shell of the transition metal hybridized with the p orbitals of the adjacent nitrogen atoms, by means of maximally localized Wannier function representation of the DFT Hamiltonian. The exact solutions of this model have quantized total spin, without quantized charge at the d shell. We propose that the quantized spin of the models actually belongs to many-body states with two different charge configurations in the d shell, hybridized with the p orbital of the adjacent nitrogen atoms. This scenario implies that the measured spin excitations are not fully localized at the transition metal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss the influence of a uniform current j⃗ on the magnetization dynamics of a ferromagnetic metal. We find that the magnon energy ε(q⃗) has a current-induced contribution proportional to q⃗⋅J→, where J→ is the spin current, and predict that collective dynamics will be more strongly damped at finite j⃗. We obtain similar results for models with and without local moment participation in the magnetic order. For transition metal ferromagnets, we estimate that the uniform magnetic state will be destabilized for j≳109A cm-2. We discuss the relationship of this effect to the spin-torque effects that alter magnetization dynamics in inhomogeneous magnetic systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a mechanism for persistent charge current. Quantum spin Hall insulators hold dissipationless spin currents in their edges so that, for a given spin orientation, a net charge current flows which is exactly compensated by the counterflow of the opposite spin. Here we show that ferromagnetic order in the edge upgrades the spin currents into persistent charge currents without applied fields. For that matter, we study the Hubbard model including Haldane-Kane-Mele spin-orbit coupling in a zigzag ribbon and consider the case of graphene. We find three electronic phases with magnetic edges that carry currents reaching 0.4 nA, comparable to persistent currents in metallic rings, for the small spin-orbit coupling in graphene. One of the phases is a valley half metal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ramón's group has designed a simple, robust and inexpensive methodology for the impregnation of different transition metal oxides on the surface of magnetite and their use in catalysis.