3 resultados para Metal selectivity

em Universidad de Alicante


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Palladium, platinum, and ruthenium supported on activated carbon were used as catalysts for the selective hydrogenation of 1-heptyne, a terminal alkyne. All catalysts were characterized by temperature programmed reduction, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. TPR and XPS suggest that the metal in all catalysts is reduced after the pretreatment with H2 at 673 K. The TPR trace of the PdNRX catalyst shows that the support surface groups are greatly modified as a consequence of the use of HNO3 during the catalyst preparation. During the hydrogenation of 1-heptyne, both palladium catalysts were more active and selective than the platinum and ruthenium catalysts. The activity order of the catalysts is as follows: PdClRX > PdNRX > PtClRX ≫ RuClRX. This superior performance of PdClRX was attributed in part to the total occupancy of the d electronic levels of the Pd metal that is supposed to promote the rupture of the H2 bond during the hydrogenation reaction. The activity differences between PdClRX and PdNRX catalysts could be attributed to a better accessibility of the substrate to the active sites, as a consequence of steric and electronic effects of the superficial support groups. The order for the selectivity to 1-heptene is as follows: PdClRX = PdNRX > RuClRX > PtClRX, and it can be mainly attributed to thermodynamic effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel hierarchical SiO2 monolithic microreactors loaded with either Pd or Pt nanoparticles have been prepared in fused silica capillaries and tested in the Preferential Oxidation of CO (PrOx) reaction. Pd and Pt nanoparticles were prepared by the reduction by solvent method and the support used was a mesoporous SiO2 monolith prepared by a well-established sol–gel methodology. Comparison of the activity with an equivalent powder catalyst indicated that the microreactors show an enhanced catalytic behavior (both in terms of CO conversion and selectivity) due to the superior mass and heat transfer processes that take place inside the microchannel. TOF values at low CO conversions have been found to be ∼2.5 times higher in the microreactors than in the powder catalyst and the residence time seems to have a noticeable influence over the selectivity of the catalysts designed for this reaction. The Pd and Pt flexible microreactors developed in this work have proven to be effective for the CO oxidation reaction both in the presence and absence of H2, standing out as a very interesting and suitable option for the development of CO purification systems of small dimensions for portable and on-board applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of the metal precursor (presence or absence of chlorine) on the preferential oxidation of CO in the presence of H2 over Pt/CeO2 catalysts has been studied. The catalysts are prepared using (Pt(NH3)4)(NO3)2 and H2PtCl6, as precursors, in order to ascertain the effect of the chlorine species on the chemical properties of the support and on the catalytic behavior of these systems in the PROX reaction. The results show that chloride species exert an important effect on the redox properties of the oxide support due to surface chlorination. Consequently, the chlorinated catalyst exhibits a poorer catalytic activity at low temperatures compared with the chlorine-free catalyst, and this is accompanied by a higher selectivity to CO2 even at high reaction temperatures. It is proposed that the CO oxidation mechanism follows different pathways on each catalyst.