7 resultados para Mesopores

em Universidad de Alicante


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activated carbons prepared from petroleum pitch and using KOH as activating agent exhibit an excellent behavior in CO2 capture both at atmospheric (∼168 mg CO2/g at 298 K) and high pressure (∼1500 mg CO2/g at 298 K and 4.5 MPa). However, an exhaustive evaluation of the adsorption process shows that the optimum carbon structure, in terms of adsorption capacity, depends on the final application. Whereas narrow micropores (pores below 0.6 nm) govern the sorption behavior at 0.1 MPa, large micropores/small mesopores (pores below 2.0–3.0 nm) govern the sorption behavior at high pressure (4.5 MPa). Consequently, an optimum sorbent exhibiting a high working capacity for high pressure applications, e.g., pressure-swing adsorption units, will require a poorly-developed narrow microporous structure together with a highly-developed wide microporous and small mesoporous network. The appropriate design of the preparation conditions gives rise to carbon materials with an extremely high delivery capacity ∼1388 mg CO2/g between 4.5 MPa and 0.1 MPa. Consequently, this study provides guidelines for the design of carbon materials with an improved ability to remove carbon dioxide from the environment at atmospheric and high pressure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In situ high pressure 129Xe NMR spectroscopy in combination with volumetric adsorption measurements were used for the textural characterization of different carbon materials with well-defined porosity including microporous carbide-derived carbons, ordered mesoporous carbide-derived carbon, and ordered mesoporous CMK-3. Adsorption/desorption isotherms were measured also by NMR up to relative pressures close to p/p0 = 1 at 237 K. The 129Xe NMR chemical shift of xenon adsorbed in porous carbons is found to be correlated with the pore size in analogy to other materials such as zeolites. In addition, these measurements were performed loading the samples with n-nonane. Nonane molecules preferentially block the micropores. However, 129Xe NMR spectroscopy proves that the nonane also influences the mesopores, thus providing information about the pore system in hierarchically structured materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The small size of micropores (typically <1 nm) in zeolites causes slow diffusion of reactant and product molecules in and out of the pores and negatively impacts the product selectivity of zeolite based catalysts, for example, fluid catalytic cracking (FCC) catalysts. Size-tailored mesoporosity was introduced into commercial zeolite Y crystals by a simple surfactant-templating post-synthetic mesostructuring process. The resulting mesoporous zeolite Y showed significantly improved product selectivity in both laboratory testing and refinery trials. Advanced characterization techniques such as electron tomography, three-dimensional rotation electron diffraction, and high resolution gas adsorption coupled with hysteresis scanning and density functional theory, unambiguously revealed the intracystalline nature and connectivity of the introduced mesopores. They can be considered as molecular highways that help reactant and product molecules diffuse quickly to and away from the catalytically active sites within the zeolite crystals and, thus, shift the selectivity to favor the production of more of the valuable liquid fuels at reduced yields of coke and unconverted feed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two petroleum residues were pyrolyzed under two different conditions to obtain pitches with low or high mesophase content. The effect of the KOH: precursor ratio and the activation temperature on the packing density and porous texture of the carbons have been studied and optimized. Activated carbons combining high micropore volume (>1 cm3/g) and high packing density (0.7 g/cm3) have been successfully prepared. Regarding excess methane adsorption capacities, the best results (160 cm3 (STP)/cm3 at 25 °C and 3.5 MPa) were obtained using the pitch with the higher content of the more organized mesophase, activated at relatively low temperature (700 °C), with a medium KOH: precursor ratio (3:1). Some of the activated carbons exhibit enhanced adsorption capacity at high pressure, giving values as high as 175 cm3 (STP)/cm3 at 25 °C and 5 MPa and 200 cm3 (STP)/cm3 at 25 °C and 10 MPa (the same amount as in an empty cylinder but at half of the pressure), indicating a contribution of large micropores and narrow mesopores to adsorption at high pressure. The density of methane in pores between 1 and 2.5 nm at pressure up to 10 MPa was estimated to understand their contribution to the total adsorption capacity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resorcinol-Formaldehyde xerogels are organic polymers that can be easily tailored to have specific properties. These materials are composed of carbon, hydrogen and oxygen, and have a surface that is very rich in oxygen functionalities, and is therefore very hydrophilic. Their most interesting feature is that they may have the same chemical composition but a different porous texture. Consequently, the influence of porous characteristics, such as pore volume, surface area or pore size can be easily assessed. In this work, a commonly used desiccant, silica gel, is compared with organic xerogels to determine their rate and capacity of water adsorption, and to evaluate the role of surface chemistry versus porous texture. It was found that organic xerogels showed a higher rate of moisture adsorption than silica gel. Pore structure also seems to play an important role in water adsorption capacity. The OX-10 sample, whose porosity was mainly composed of micro-mesoporosity displayed a water adsorption capacity two times greater than that of the silica gel, and three times higher than that of the totally macroporous xerogel OX-2100. The presence of feeder pores (mesopores) that facilitate the access to the hydrophilic surface was observed to be the key factor for a good desiccant behaviour. Neither the total pore volume nor the high surface area (i.e. high microporosity) of the desiccant sample, is as important as the mesopore structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Copper complexes containing inorganic ligands were loaded on a functionalized titania (F-TiO2) to obtain drug delivery systems. The as-received copper complexes and those released from titania were tested as toxic agents on different cancer cell lines. The sol–gel method was used for the synthesis and surface functionalization of the titania, as well as for loading the copper complexes, all in a single step. The resultant Cu/F-TiO2 materials were characterized by several techniques. An “in vitro” releasing test was developed using an aqueous medium. Different concentrations (15.6–1000 µg mL−1) of each copper complex, those loaded on titania (Cu/F-TiO2), functionalized titania, and cis-Pt as a reference material, were incubated on RG2, C6, U373, and B16 cancer cell lines for 24 h. The morphology of functionalized titania and the different Cu/F-TiO2 materials obtained consists of aggregated nanoparticles, which generate mesopores. The amorphous phase (in dominant proportion) and the anatase phase were the structures identified through the X-ray diffraction profiles. These results agree with high-resolution transmission electron microscopy. Theoretical studies indicate that the copper compounds were released by a Fickian diffusion mechanism. It was found that independently of the copper complex and also the cell line used, low concentrations of each copper compound were sufficient to kill almost 100 % of cancer cells. When the cancer cells were treated with increasing concentrations of the Cu/F-TiO2 materials the number of survival cells decreased. Both copper complexes alone as well as those loaded on TiO2 had higher toxic effect than cis-Pt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fixed bed CO2 adsorption tests were carried out in model flue-gas streams onto two commercial activated carbons, namely Filtrasorb 400 and Nuchar RGC30, at 303 K, 323 K and 353 K. Thermodynamic adsorption results highlighted that the presence of a narrower micropore size distribution with a prevailing contribution of very small pore diameters, observed for Filtrasorb 400, is a key factor in determining a higher CO2 capture capacity, mostly at low temperature. These experimental evidences were also corroborated by the higher value of the isosteric heat derived for Filtrasorb 400, testifying stronger interactions with CO2 molecules with respect to Nuchar RGC30. Dynamic adsorption results on the investigated sorbents highlighted the important role played by both a greater contribution of mesopores and the presence of wider micropores for Nuchar RGC30 in establishing faster capture kinetics with respect to Filtrasorb 400, in particular at 303 K. Furthermore, the modeling analysis of 15% CO2 breakthrough curves allowed identifying intraparticle diffusion as the rate-determining step of the process.