3 resultados para Mean squared error
em Universidad de Alicante
Resumo:
La temperatura superficial del mar (SST) estimada a partir de los productos 11 μm diurnos y nocturnos y 4 μm nocturnos del sensor MODIS (Moderate Resolution Imaging Spectroradiometer) a bordo de la plataforma Aqua, han sido comparados con datos medidos in situ a tres profundidades diferentes (15, 50 y 100 cm) en una zona costera del Mediterráneo Occidental. Esta comparación ha permitido analizar la incertidumbre que existe en la estimación de este parámetro en aguas someras y próximas a la costa mediante imágenes de satélite de baja resolución espacial. Los resultados obtenidos demuestran que el producto diurno SST_11 μm, obtiene los estadísticos RMSE (error cuadrático medio) y r2 (coeficiente de correlación de Pearson) más ajustados con valores de 1°C y 0,96, respectivamente, para la profundidad 50 cm.
Resumo:
Power line interference is one of the main problems in surface electromyogram signals (EMG) analysis. In this work, a new method based on the stationary wavelet packet transform is proposed to estimate and remove this kind of noise from EMG data records. The performance has been quantitatively evaluated with synthetic noisy signals, obtaining good results independently from the signal to noise ratio (SNR). For the analyzed cases, the obtained results show that the correlation coefficient is around 0.99, the energy respecting to the pure EMG signal is 98–104%, the SNR is between 16.64 and 20.40 dB and the mean absolute error (MAE) is in the range of −69.02 and −65.31 dB. It has been also applied on 18 real EMG signals, evaluating the percentage of energy respecting to the noisy signals. The proposed method adjusts the reduction level to the amplitude of each harmonic present in the analyzed noisy signals (synthetic and real), reducing the harmonics with no alteration of the desired signal.
Resumo:
The effect of foundation embedment on settlement calculation is a widely researched topic in which there is no scientific consensus regarding the magnitude of settlement reduction. In this paper, a non-linear three dimensional Finite Element analysis has been performed with the aim of evaluating the aforementioned effect. For this purpose, 1800 models were run considering different variables, such as the depth and dimensions of the foundation and the Young’s modulus and Poisson’s ratio of the soil. The settlements from models with foundations at surface level and at depth were then compared and the relationship between them established. The statistical analysis of this data allowed two new expressions, with a mean maximum error of 1.80%, for the embedment influence factor of a foundation to be proposed and these to be compared with commonly used corrections. The proposed equations were validated by comparing the settlements calculated with the proposed influence factors and the true settlements measured in several real foundations. From the comprehensive study of all modelled cases, an improved approach, when compared to those proposed by other authors, for the calculation of the true elastic settlements of an embedded foundation is proposed.