1 resultado para Markov Model
em Universidad de Alicante
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (32)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (10)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (10)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (16)
- Boston University Digital Common (2)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (8)
- Cambridge University Engineering Department Publications Database (32)
- CentAUR: Central Archive University of Reading - UK (21)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (1)
- Cochin University of Science & Technology (CUSAT), India (6)
- Collection Of Biostatistics Research Archive (7)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (3)
- DigitalCommons@The Texas Medical Center (10)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (1)
- Greenwich Academic Literature Archive - UK (4)
- Helda - Digital Repository of University of Helsinki (3)
- Indian Institute of Science - Bangalore - Índia (22)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (6)
- National Center for Biotechnology Information - NCBI (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (21)
- Queensland University of Technology - ePrints Archive (532)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (24)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Scielo España (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (8)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Université de Lausanne, Switzerland (3)
- Université de Montréal, Canada (7)
- University of Michigan (1)
- University of Queensland eSpace - Australia (11)
- University of Washington (5)
Resumo:
We present and evaluate a novel supervised recurrent neural network architecture, the SARASOM, based on the associative self-organizing map. The performance of the SARASOM is evaluated and compared with the Elman network as well as with a hidden Markov model (HMM) in a number of prediction tasks using sequences of letters, including some experiments with a reduced lexicon of 15 words. The results were very encouraging with the SARASOM learning better and performing with better accuracy than both the Elman network and the HMM.