7 resultados para Magnetic exchange

em Universidad de Alicante


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A scanning tunneling microscope can probe the inelastic spin excitations of a single magnetic atom in a surface via spin-flip assisted tunneling in which transport electrons exchange spin and energy with the atomic spin. If the inelastic transport time, defined as the average time elapsed between two inelastic spin flip events, is shorter than the atom spin-relaxation time, the scanning tunnel microscope (STM) current can drive the spin out of equilibrium. Here we model this process using rate equations and a model Hamiltonian that describes successfully spin-flip-assisted tunneling experiments, including a single Mn atom, a Mn dimer, and Fe Phthalocyanine molecules. When the STM current is not spin polarized, the nonequilibrium spin dynamics of the magnetic atom results in nonmonotonic dI/dV curves. In the case of spin-polarized STM current, the spin orientation of the magnetic atom can be controlled parallel or antiparallel to the magnetic moment of the tip. Thus, spin-polarized STM tips can be used both to probe and to control the magnetic moment of a single atom.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ferromagnetism is predicted in undoped diluted magnetic semiconductors illuminated by intense sub-band-gap laser radiation . The mechanism for photoinduced ferromagnetism is coherence between conduction and valence bands induced by the light which leads to an optical exchange interaction. The ferromagnetic critical temperature TC depends both on the properties of the material and on the frequency and intensity of the laser and could be above 1K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider dilute magnetic doping in the surface of a three dimensional topological insulator where a two dimensional Dirac electron gas resides. We find that exchange coupling between magnetic atoms and the Dirac electrons has a strong and peculiar effect on both. First, the exchange-induced single ion magnetic anisotropy is very large and favors off-plane orientation. In the case of a ferromagnetically ordered phase, we find a colossal magnetic anisotropy energy, of the order of the critical temperature. Second, a persistent electronic current circulates around the magnetic atom and, in the case of a ferromagnetic phase, around the edges of the surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study single-electron transport through a graphene quantum dot with magnetic adsorbates. We focus on the relation between the spin order of the adsorbates and the linear conductance of the device. The electronic structure of the graphene dot with magnetic adsorbates is modeled through numerical diagonalization of a tight-binding model with an exchange potential. We consider several mechanisms by which the adsorbate magnetic state can influence transport in a single-electron transistor: tuning the addition energy, changing the tunneling rate, and in the case of spin-polarized electrodes, through magnetoresistive effects. Whereas the first mechanism is always present, the others require that the electrode has to have either an energy- or spin-dependent density of states. We find that graphene dots are optimal systems to detect the spin state of a few magnetic centers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When individual quantum spins are placed in close proximity to conducting substrates, the localized spin is coupled to the nearby itinerant conduction electrons via Kondo exchange. In the strong coupling limit this can result in the Kondo effect — the formation of a correlated, many body singlet state — and a resulting renormalization of the density of states near the Fermi energy. However, even when Kondo screening does not occur, Kondo exchange can give rise to a wide variety of other phenomena. In addition to the well known renormalization of the g factor and the finite spin decoherence and relaxation times, Kondo exchange has recently been found to give rise to a newly discovered effect: the renormalization of the single ion magnetic anisotropy. Here we put these apparently different phenomena on equal footing by treating the effect of Kondo exchange perturbatively. In this formalism, the central quantity is ρJ, the product of the density of states at the Fermi energy ρ and the Kondo exchange constant J. We show that perturbation theory correctly describes the experimentally observed exchange induced shifts of the single spin excitation energies, demonstrating that Kondo exchange can be used to tune the effective magnetic anisotropy of a single spin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A wide class of nanomagnets shows striking quantum behaviour, known as quantum spin tunnelling (QST): instead of two degenerate ground states with opposite magnetizations, a bonding-antibonding pair forms, resulting in a splitting of the ground-state doublet with wave functions linear combination of two classically opposite magnetic states, leading to the quenching of their magnetic moment. Here we study how QST is destroyed and classical behaviour emerges in the case of magnetic adatoms, where, contrary to larger nanomagnets, the QST splitting is in some instances bigger than temperature and broadening. We analyze two different mechanisms for the renormalization of the QST splitting: Heisenberg exchange between different atoms, and Kondo exchange interaction with the substrate electrons. Sufficiently strong spin-substrate and spin-spin coupling renormalize the QST splitting to zero allowing the environmental decoherence to eliminate superpositions between classical states, leading to the emergence of spontaneous magnetization. Importantly, we extract the strength of the Kondo exchange for various experiments on individual adatoms and construct a phase diagram for the classical to quantum transition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the spin waves of the triangular skyrmion crystal that emerges in a two-dimensional spin lattice model as a result of the competition between Heisenberg exchange, Dzyalonshinkii–Moriya interactions, Zeeman coupling and uniaxial anisotropy. The calculated spin wave bands have a finite Berry curvature that, in some cases, leads to non-zero Chern numbers, making this system topologically distinct from conventional magnonic systems. We compute the edge spin-waves, expected from the bulk-boundary correspondence principle, and show that they are chiral, which makes them immune to elastic backscattering. Our results illustrate how topological phases can occur in self-generated emergent superlattices at the mesoscale.