18 resultados para Machine learning.
em Universidad de Alicante
Resumo:
This paper presents a preliminary study in which Machine Learning experiments applied to Opinion Mining in blogs have been carried out. We created and annotated a blog corpus in Spanish using EmotiBlog. We evaluated the utility of the features labelled firstly carrying out experiments with combinations of them and secondly using the feature selection techniques, we also deal with several problems, such as the noisy character of the input texts, the small size of the training set, the granularity of the annotation scheme and the language object of our study, Spanish, with less resource than English. We obtained promising results considering that it is a preliminary study.
Resumo:
Hospitals attached to the Spanish Ministry of Health are currently using the International Classification of Diseases 9 Clinical Modification (ICD9-CM) to classify health discharge records. Nowadays, this work is manually done by experts. This paper tackles the automatic classification of real Discharge Records in Spanish following the ICD9-CM standard. The challenge is that the Discharge Records are written in spontaneous language. We explore several machine learning techniques to deal with the classification problem. Random Forest resulted in the most competitive one, achieving an F-measure of 0.876.
Resumo:
El análisis de textos de la Web 2.0 es un tema de investigación relevante hoy en día. Sin embargo, son muchos los problemas que se plantean a la hora de utilizar las herramientas actuales en este tipo de textos. Para ser capaces de medir estas dificultades primero necesitamos conocer los diferentes registros o grados de informalidad que podemos encontrar. Por ello, en este trabajo intentaremos caracterizar niveles de informalidad para textos en inglés en la Web 2.0 mediante técnicas de aprendizaje automático no supervisado, obteniendo resultados del 68 % en F1.
Resumo:
Preliminary research demonstrated the EmotiBlog annotated corpus relevance as a Machine Learning resource to detect subjective data. In this paper we compare EmotiBlog with the JRC Quotes corpus in order to check the robustness of its annotation. We concentrate on its coarse-grained labels and carry out a deep Machine Learning experimentation also with the inclusion of lexical resources. The results obtained show a similarity with the ones obtained with the JRC Quotes corpus demonstrating the EmotiBlog validity as a resource for the SA task.
Resumo:
The extension to new languages is a well known bottleneck for rule-based systems. Considerable human effort, which typically consists in re-writing from scratch huge amounts of rules, is in fact required to transfer the knowledge available to the system from one language to a new one. Provided sufficient annotated data, machine learning algorithms allow to minimize the costs of such knowledge transfer but, up to date, proved to be ineffective for some specific tasks. Among these, the recognition and normalization of temporal expressions still remains out of their reach. Focusing on this task, and still adhering to the rule-based framework, this paper presents a bunch of experiments on the automatic porting to Italian of a system originally developed for Spanish. Different automatic rule translation strategies are evaluated and discussed, providing a comprehensive overview of the challenge.
Resumo:
EmotiBlog is a corpus labelled with the homonymous annotation schema designed for detecting subjectivity in the new textual genres. Preliminary research demonstrated its relevance as a Machine Learning resource to detect opinionated data. In this paper we compare EmotiBlog with the JRC corpus in order to check the EmotiBlog robustness of annotation. For this research we concentrate on its coarse-grained labels. We carry out a deep ML experimentation also with the inclusion of lexical resources. The results obtained show a similarity with the ones obtained with the JRC demonstrating the EmotiBlog validity as a resource for the SA task.
Resumo:
Comunicación presentada en las IV Jornadas TIMM, Torres (Jaén), 7-8 abril 2011.
Resumo:
IARG-AnCora tiene como objetivo la anotación con papeles temáticos de los argumentos implícitos de las nominalizaciones deverbales en el corpus AnCora. Estos corpus servirán de base para los sistemas de etiquetado automático de roles semánticos basados en técnicas de aprendizaje automático. Los analizadores semánticos son componentes básicos en las aplicaciones actuales de las tecnologías del lenguaje, en las que se quiere potenciar una comprensión más profunda del texto para realizar inferencias de más alto nivel y obtener así mejoras cualitativas en los resultados.
Resumo:
El foco geográfico de un documento identifica el lugar o lugares en los que se centra el contenido del texto. En este trabajo se presenta una aproximación basada en corpus para la detección del foco geográfico en el texto. Frente a otras aproximaciones que se centran en el uso de información puramente geográfica para la detección del foco, nuestra propuesta emplea toda la información textual existente en los documentos del corpus de trabajo, partiendo de la hipótesis de que la aparición de determinados personajes, eventos, fechas e incluso términos comunes, pueden resultar fundamentales para esta tarea. Para validar nuestra hipótesis, se ha realizado un estudio sobre un corpus de noticias geolocalizadas que tuvieron lugar entre los años 2008 y 2011. Esta distribución temporal nos ha permitido, además, analizar la evolución del rendimiento del clasificador y de los términos más representativos de diferentes localidades a lo largo del tiempo.
Resumo:
El campo de procesamiento de lenguaje natural (PLN), ha tenido un gran crecimiento en los últimos años; sus áreas de investigación incluyen: recuperación y extracción de información, minería de datos, traducción automática, sistemas de búsquedas de respuestas, generación de resúmenes automáticos, análisis de sentimientos, entre otras. En este artículo se presentan conceptos y algunas herramientas con el fin de contribuir al entendimiento del procesamiento de texto con técnicas de PLN, con el propósito de extraer información relevante que pueda ser usada en un gran rango de aplicaciones. Se pueden desarrollar clasificadores automáticos que permitan categorizar documentos y recomendar etiquetas; estos clasificadores deben ser independientes de la plataforma, fácilmente personalizables para poder ser integrados en diferentes proyectos y que sean capaces de aprender a partir de ejemplos. En el presente artículo se introducen estos algoritmos de clasificación, se analizan algunas herramientas de código abierto disponibles actualmente para llevar a cabo estas tareas y se comparan diversas implementaciones utilizando la métrica F en la evaluación de los clasificadores.
Resumo:
Paper submitted to MML 2013, 6th International Workshop on Machine Learning and Music, Prague, September 23, 2013.
Resumo:
In the chemical textile domain experts have to analyse chemical components and substances that might be harmful for their usage in clothing and textiles. Part of this analysis is performed searching opinions and reports people have expressed concerning these products in the Social Web. However, this type of information on the Internet is not as frequent for this domain as for others, so its detection and classification is difficult and time-consuming. Consequently, problems associated to the use of chemical substances in textiles may not be detected early enough, and could lead to health problems, such as allergies or burns. In this paper, we propose a framework able to detect, retrieve, and classify subjective sentences related to the chemical textile domain, that could be integrated into a wider health surveillance system. We also describe the creation of several datasets with opinions from this domain, the experiments performed using machine learning techniques and different lexical resources such as WordNet, and the evaluation focusing on the sentiment classification, and complaint detection (i.e., negativity). Despite the challenges involved in this domain, our approach obtains promising results with an F-score of 65% for polarity classification and 82% for complaint detection.
Resumo:
Este artículo presenta la aplicación y resultados obtenidos de la investigación en técnicas de procesamiento de lenguaje natural y tecnología semántica en Brand Rain y Anpro21. Se exponen todos los proyectos relacionados con las temáticas antes mencionadas y se presenta la aplicación y ventajas de la transferencia de la investigación y nuevas tecnologías desarrolladas a la herramienta de monitorización y cálculo de reputación Brand Rain.
Resumo:
La incorporación del EEES provocó una infinidad de desafíos y retos a las Universidades que a día de hoy aún están siendo solucionados. Además, ha conllevado nuevas oportunidades para la formación de estudiantes pero también para las Universidades. Entre ellas, la formación interuniversitaria entre estados miembro de la UE. El EEES permite unificar a través del sistema ECTS la carga de trabajo de los estudiantes facilitando la propuesta de planes de estudios interuniversitarios. Sin embargo, surgen desafíos a la hora de llevarlos a la práctica. Independientemente de los retos en la propuesta de los planes de estudio, es necesario implementar procesos de enseñanza-aprendizaje que salven la distancia en el espacio físico entre el alumnado y el profesorado. En este artículo se presenta la experiencia docente de la asignatura e-home del Máster Machine Learning and Data Mining de la Universidad de Alicante y la Universidad Jean Monnet (Francia). En este caso, se combina la formación en aula presencial con formación en aula virtual a través de videoconferencia. La evaluación del método de enseñanza-aprendizaje propuesto utiliza la propia experiencia docente y encuestas realizadas a los alumnos para poner de manifiesto la ruptura de barreras espaciales y un éxito a nivel docente.
Resumo:
Tema 6. Text Mining con Topic Modeling.