11 resultados para MEDITERRANEAN CLIMATE
em Universidad de Alicante
Resumo:
The new Spanish legislation in Energy Saving, similar to European regulation, provides new technical requirements to adequate technical solutions used in integral rehabilitation of existing buildings. The aim of this paper is to present, analyze and discuss the main thermal insulation constructive solutions best suited to a Mediterranean climate, and conclude on their suitability under the legislation in Energy Saving. The proposed methodology is based on the most usual constructive solutions in integral rehabilitation of buildings by analyzing their outstanding design features, by studying its construction details and then by applying the software provided by the Spanish legislation of energy efficiency in buildings. The results of the study evaluate and classify several solutions for façade rehabilitation according to energy efficiency criteria and their suitability for this type of weather, verifying the necessity of using software applications in energy saving for the proper design of constructive solutions in building rehabilitation.
Resumo:
El trabajo ha sido desarrollado en un agrosistema tradicional del NE de la provincia de Alicante (SE España). La superficie total del área de estudio es de aproximadamente 59.000 ha. La zona presenta grandes contrastes, con un área interior de morfología montañosa, con pequeñas cuencas dedicadas a la agricultura de secano, mientras que la zona litoral se caracteriza por un relieve menos abrupto, con núcleos de población y explotaciones agrícolas de regadío. El estudio se basa en la información extraída a partir de encuestas realizadas a los gestores cinegéticos, obteniendo datos acerca de las abundancias y la evolución de las poblaciones de jabalí entre los años 1980 y la actualidad. Se construye una base de datos SIG con un total de 15 cotos de caza. La base de datos incluye las siguientes variables: usos del suelo a nivel de coto, abundancias y evolución temporal de la especie. Los resultados muestran que dos de los cotos presentan densidades de jabalí elevadas (15-25 ind/ha), dos cotos presentan densidades medias (10-15 ind/ha), cinco cotos muestran densidades bajas (5-10 ind/ha) y otros seis cotos densidades muy bajas (0-5 ind/ha). Los valores máximos se encuentran en cotos de interior y de montaña donde todavía se mantienen en activo cultivos de secano y se intercalan con cultivos abandonados y áreas naturales. También se observan densidades elevadas en el único coto de todos los analizados que se encuentra en la costa, donde la disponibilidad de hábitat es menor y, por lo tanto, hay una mayor concentración de individuos. Finalmente, el jabalí ha aumentado sus poblaciones desde la década de los años 1980 en la totalidad de los cotos estudiados.
Resumo:
En este trabajo se ha estudiado la evolución de la microestructura, propiedades de durabilidad y resistencias mecánicas de morteros preparados con cementos comerciales, que contienen ceniza volante (entre un 21% y un 35%) y escoria de alto horno (entre un 66% y un 80%), expuestos a tres ambientes, un ambiente óptimo de laboratorio, y dos ambientes representativos del clima Atlántico y Mediterráneo respectivamente. Como referencia de comportamiento, también se ensayaron morteros de cemento Portland. La microestructura se caracterizó mediante porosimetría de intrusión de mercurio. En lo referente a la durabilidad, se estudiaron los coeficientes de absorción capilar y de migración de cloruros en estado no estacionario. También se determinó la resistencia a compresión de los morteros. Los ensayos se realizaron a 7, 28 y 90 días. La principal conclusión alcanzada es que los cementos con cenizas y escorias expuestos a condiciones ambientales representativas de los climas Atlántico y Mediterráneo, pueden desarrollar unas propiedades en servicio adecuadas al cabo de tres meses.
Resumo:
Climate predictions for the Mediterranean Basin include increased temperatures, decreased precipitation, and increased frequency of extreme climatic events (ECE). These conditions are associated with decreased tree growth and increased vulnerability to pests and diseases. The anatomy of tree rings responds to these environmental conditions. Quantitatively, the width of a tree ring is largely determined by the rate and duration of cell division by the vascular cambium. In the Mediterranean climate, this division may occur throughout almost the entire year. Alternatively, cell division may cease during relatively cool and dry winters, only to resume in the same calendar year with milder temperatures and increased availability of water. Under particularly adverse conditions, no xylem may be produced in parts of the stem, resulting in a missing ring (MR). A dendrochronological network of Pinus halepensis was used to determine the relationship of MR to ECE. The network consisted of 113 sites, 1,509 trees, 2,593 cores, and 225,428 tree rings throughout the distribution range of the species. A total of 4,150 MR were identified. Binomial logistic regression analysis determined that MR frequency increased with increased cambial age. Spatial analysis indicated that the geographic areas of south-eastern Spain and northern Algeria contained the greatest frequency of MR. Dendroclimatic regression analysis indicated a non-linear relationship of MR to total monthly precipitation and mean temperature. MR are strongly associated with the combination of monthly mean temperature from previous October till current February and total precipitation from previous September till current May. They are likely to occur with total precipitation lower than 50 mm and temperatures higher than 5°C. This conclusion is global and can be applied to every site across the distribution area. Rather than simply being a complication for dendrochronology, MR formation is a fundamental response of trees to adverse environmental conditions. The demonstrated relationship of MR formation to ECE across this dendrochronological network in the Mediterranean basin shows the potential of MR analysis to reconstruct the history of past climatic extremes and to predict future forest dynamics in a changing climate.
Resumo:
The total sea level variation (SLV) is the combination of steric and mass␣induced SLV, whose exact shares are key to understanding the oceanic response to climate system changes. Total SLV can be observed by radar altimetry satellites such as TOPEX/POSEIDON and Jason 1/2. The steric SLV can be computed through temperature and salinity profiles from in situ measurements or from ocean general circulation models (OGCM), which can assimilate the said observations. The mass-induced SLV can be estimated from its time-variable gravity (TVG) signals. We revisit this problem in the Mediterranean Sea estimating the observed, steric, and mass-induced SLV, for the latter we analyze the latest TVG data set from the GRACE (Gravity Recovery and Climate Experiment) satellite mission launched in 2002, which is 3.5 times longer than in previous studies, with the application of a two-stage anisotropic filter to reduce the noise in high-degree and -order spherical harmonic coefficients. We confirm that the intra-annual total SLV are only produced by water mass changes, a fact explained in the literature as a result of the wind field around the Gibraltar Strait. The steric SLV estimated from the residual of “altimetry minus GRACE” agrees in phase with that estimated from OGCMs and in situ measurements, although showing a higher amplitude. The net water fluxes through both the straits of Gibraltar and Sicily have also been estimated accordingly.
Resumo:
The sea level variation (SLVtotal) is the sum of two major contributions: steric and mass-induced. The steric SLVsteric is that resulting from the thermal and salinity changes in a given water column. It only involves volume change, hence has no gravitational effect. The mass-induced SLVmass, on the other hand, arises from adding or subtracting water mass to or from the water column and has direct gravitational signature. We examine the closure of the seasonal SLV budget and estimate the relative importance of the two contributions in the Mediterranean Sea as a function of time. We use ocean altimetry data (from TOPEX/Poseidon, Jason 1, ERS, and ENVISAT missions) to estimate SLVtotal, temperature, and salinity data (from the Estimating the Circulation and Climate of the Ocean ocean model) to estimate SLVsteric, and time variable gravity data (from Gravity Recovery and Climate Experiment (GRACE) Project, April 2002 to July 2004) to estimate SLVmass. We find that the annual cycle of SLVtotal in the Mediterranean is mainly driven by SLVsteric but moderately offset by SLVmass. The agreement between the seasonal SLVmass estimations from SLVtotal – SLVsteric and from GRACE is quite remarkable; the annual cycle reaches the maximum value in mid-February, almost half a cycle later than SLVtotal or SLVsteric, which peak by mid-October and mid-September, respectively. Thus, when sea level is rising (falling), the Mediterranean Sea is actually losing (gaining) mass. Furthermore, as SLVmass is balanced by vertical (precipitation minus evaporation, P–E) and horizontal (exchange of water with the Atlantic, Black Sea, and river runoff) mass fluxes, we compared it with the P–E determined from meteorological data to estimate the annual cycle of the horizontal flux.
Resumo:
Water availability in adequate quantities and qualities is a fundamental requirement for tourism. In the Mediterranean, one of the world’s leading tourist destinations, water availability is subject to modest and erratic precipitation figures which may decline with climate change. The tourist industry therefore may have to assure future supplies by either recurring to new technologies such as desalination or increasing efficiency in water use. A third and yet little explored alternative would be to seek for complementary of uses with irrigation, the traditional user in many coastal Mediterranean areas and holder of substantial amounts of water. In this paper we present the example of the Consorcio de Aguas de la Marina Baja to show how Benidorm, in Mediterranean Spain and one of the most important tourist centers of the Mediterranean, obtains part of its water through agreements with farmers by which these trade their water with Benidorm and other towns’ treated wastewater of enough quality to be used for irrigation, and obtain several compensations in return. The advantages and disadvantages of the water trade between farmers and tourist interests in the Benidorm area are discussed and we argue that solutions to the pending water crisis of many coastal Mediterranean tourist areas may not need to rely uniquely on expensive technologies to generate new resources but may attempt other alternatives.
Resumo:
Compositional and chemical analyses suggest that Middle Triassic–Lower Liassic continental redbeds (in the internal domains of the Betic, Maghrebian, and Apenninic chains) can be considered a regional lithosome marking the Triassic-Jurassic rift-valley stage of Tethyan rifting, which led to the Pangaea breakup and subsequent development of a mosaic of plates and microplates. Sandstones are quartzose to quartzolithic and represent a provenance of continental block and recycled orogen, made up mainly of Paleozoic metasedimentary rocks similar to those underlying the redbeds. Mudrocks display K enrichments; intense paleoweathering under a hot, episodically humid climate with a prolonged dry season; and sediment recycling. Redbeds experienced temperatures in the range of 100°–160°C and lithostatic/tectonic loading of more than 4 km. These redbeds represent an important stratigraphic signature to reconstruct a continental block (Mesomediterranean Microplate) that separated different realms of the western Tethys from Middle-Late Jurassic to Miocene, when it was completely involved in Alpine orogenesis.
Resumo:
Wildfires produce a significant release of gases and particles affecting climate and air quality. In the Mediterranean region, shrublands significantly contribute to burned areas and may show specific emission profiles. Our objective was to depict and quantify the primary-derived aerosols and precursors of secondary particulate species released during shrubland experimental fires, in which fire-line intensity values were equivalent to those of moderate shrubland wildfires, by using a number of different methodologies for the characterization of organic and inorganic compounds in both gas-phase and particulate-phase. Emissions of PM mass, particle number concentrations and organic and inorganic PMx components during flaming and smouldering phases were characterized in a field shrubland fire experiment. Our results revealed a clear prevalence of K+ and SO42- as inorganic ions released during the flaming-smouldering processes, accounting for 68 to 80% of the inorganic soluble fraction. During the residual-smouldering phases, in addition to K+ and SO42-, Ca2+ was found in significant amounts probably due the predominance of re-suspension processes (ashes and soil dust) over other emission sources during this stage. Concerning organic markers, the chromatograms were dominated by phenols, n-alkanals and n-alkanones, as well as by alcohol biomarkers in all the PMx fractions investigated. Levoglucosan was the most abundant degradation compound with maximum emission factors between 182 and 261 mg kg-1 in PM2.5 and PM10 respectively. However, levoglucosan was also observed in significant amounts in the gas-phase. The most representative organic volatile constituents in the smoke samples were alcohols, carbonyls, acids, monocyclic and bicyclic arenes, isoprenoids and alkanes compounds. The emission factors obtained in this study may contribute to the validation and improvement of national and international emission inventories of this intricate and diffuse emission source.
Resumo:
One of the main challenges in biological conservation has been to understand species distribution across space and time. Over the last decades, many diversity and conservation surveys have been conducted that have revealed that habitat heterogeneity acts as a major factor that determines saproxylic assemblages. However, temporal dynamics have been poorly studied, especially in Mediterranean forests. We analyzed saproxylic beetle distribution at inter and intra-annual scales in a “dehesa” ecosystem, which is a traditional Iberian agrosilvopastoral ecosystem that is characterized by the presence of old and scattered trees that dominate the landscape. Significant differences in effective numbers of families/species and species richness were found at the inter-annual scale, but this was not the case for composition. Temperature and relative humidity did not explain these changes which were mainly due to the presence of rare species. At the intra-annual scale, significant differences in the effective numbers of families/species, species richness and composition between seasons were found, and diversity partitioning revealed that season contributed significantly to gamma-diversity. Saproxylic beetle assemblages exhibited a marked seasonality in richness but not in abundance, with two peaks of activity, the highest between May and June, and the second between September and October. This pattern is mainly driven by the seasonality of the climate in the Mediterranean region, which influences ecosystem dynamics and imposes a marked seasonality on insect assemblages. An extended sampling period over different seasons allowed an overview of saproxylic dynamics, and revealed which families/species were restricted to particular seasons. Recognizing that seasons act as a driver in modelling saproxylic beetle assemblages might be a valuable tool in monitoring and for conservation strategies in Mediterranean forests.
Resumo:
Restoration efforts in the Mediterranean Basin have been changing from a silvicultural to an ecological restoration approach. Yet, to what extent the projects are guided by ecological restoration principles remains largely unknown. To analyse this issue, we built an on-line survey addressed to restoration practitioners. We analysed 36 restoration projects, mostly from drylands (86%). The projects used mainly soil from local sources. The need to comply with legislation was more important as a restoration motive for European Union (EU) than for non-EU countries, while public opinion and health had a greater importance in the latter. Non-EU countries relied more on non-native plant species than EU countries, thus deviating from ecological restoration guidelines. Nursery-grown plants used were mostly of local or regional provenance, whilst seeds were mostly of national provenance. Unexpected restoration results (e.g. inadequate biodiversity) were reported for 50% of the projects and restoration success was never evaluated in 22%. Long term evaluation (> 6 years) was only performed in 31% of cases, and based primarily on plant diversity and cover. The use of non-native species and species of exogenous provenances may: i) entail the loss of local genetic and functional trait diversity, critical to cope with drought, particularly under the predicted climate change scenarios, and ii) lead to unexpected competition with native species and/or negatively impact local biotic interactions. Absent or inappropriate monitoring may prevent the understanding of restoration trajectories, precluding adaptive management strategies, often crucial to create functional ecosystems able to provide ecosystem services. The overview of ecological restoration projects in the Mediterranean Basin revealed high variability among practices and highlighted the need for improved scientific assistance and information exchange, greater use of native species of local provenance, and more long-term monitoring and evaluation, including functional and ecosystem services' indicators, to improve and spread the practice of ecological restoration.