2 resultados para M1 and M2 macrophages
em Universidad de Alicante
Resumo:
Liver X receptors (LXRs) are ligand-activated transcription factors of the nuclear receptor superfamily. They play important roles in controlling cholesterol homeostasis and as regulators of inflammatory gene expression and innate immunity, by blunting the induction of classical pro-inflammatory genes. However, opposite data have also been reported on the consequences of LXR activation by oxysterols, resulting in the specific production of potent pro-inflammatory cytokines and reactive oxygen species (ROS). The effect of the inflammatory state on the expression of LXRs has not been studied in human cells, and constitutes the main aim of the present work. Our data show that when human neutrophils are triggered with synthetic ligands, the synthesis of LXRα mRNA became activated together with transcription of the LXR target genes ABCA1, ABCG1 and SREBP1c. An inflammatory mediator, 15-deoxy-Δ12,14-prostaglandin J2 (15dPGJ2), hindered T0901317-promoted induction of LXRα mRNA expression together with transcription of its target genes in both neutrophils and human macrophages. This down-regulatory effect was dependent on the release of reactive oxygen species elicited by 15dPGJ2, since it was enhanced by pro-oxidant treatment and reversed by antioxidants, and was also mediated by ERK1/2 activation. Present data also support that the 15dPGJ2-induced serine phosphorylation of the LXRα molecule is mediated by ERK1/2. These results allow to postulate that down-regulation of LXR cellular levels by pro-inflammatory stimuli might be involved in the development of different vascular diseases, such as atherosclerosis.
Resumo:
Toll-like receptors (TLRs) are expressed by haematopoietic stem and progenitor cells (HSPCs), and may play a role in haematopoiesis in response to pathogens during infection. We have previously demonstrated that (i) inactivated yeasts of Candida albicans induce in vitro differentiation of HSPCs towards the myeloid lineage, and (ii) soluble TLR agonists induce in vivo their differentiation towards macrophages. In this work, using an in vivo model of HSPCs transplantation, we report for the first time that HSPCs sense C. albicans in vivo and subsequently are directed to produce macrophages by a TLR2-dependent signalling. Purified lineage-negative cells (Lin−) from bone marrow of C57BL/6 mice (CD45.2 alloantigen) were transplanted into B6Ly5.1 mice (CD45.1 alloantigen), which were then injected with viable or inactivated C. albicans yeasts. Transplanted cells were detected in the spleen and in the bone marrow of recipient mice, and they differentiate preferentially to macrophages, both in response to infection or in response to inactivated yeasts. The generation of macrophages was dependent on TLR2 but independent of TLR4, as transplanted Lin− cells from TLR2−/− mice did not give rise to macrophages, whereas Lin− cells from TLR4−/− mice generated macrophages similarly to control cells. Interestingly, the absence of TLR2, or in a minor extent TLR4, gives Lin− cells an advantage in transplantation assays, as increases the percentage of transplanted recovered cells. Our results indicatethat TLR-mediated recognition of C. albicans by HSPCs may help replace and/or increase cells that constitute the first line of defence against the fungus, and suggest that TLR-mediated signalling may lead to reprogramming early progenitors to rapidly replenishing the innate immune system and generate the most necessary mature cells to deal with the pathogen.