3 resultados para Low-level light therapy in central nervous system

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ubiquitin–proteasome system (UPS) is the main intracellular pathway for modulated protein turnover, playing an important role in the maintenance of cellular homeostasis. It also exerts a protein quality control through degradation of oxidized, mutant, denatured, or misfolded proteins and is involved in many biological processes where protein level regulation is necessary. This system allows the cell to modulate its protein expression pattern in response to changing physiological conditions and provides a critical protective role in health and disease. Impairments of UPS function in the central nervous system (CNS) underlie an increasing number of genetic and idiopathic diseases, many of which affect the retina. Current knowledge on the UPS composition and function in this tissue, however, is scarce and dispersed. This review focuses on UPS elements reported in the retina, including ubiquitinating and deubiquitinating enzymes (DUBs), and alternative proteasome assemblies. Known and inferred roles of protein ubiquitination, and of the related, SUMO conjugation (SUMOylation) process, in normal retinal development and adult homeostasis are addressed, including modulation of the visual cycle and response to retinal stress and injury. Additionally, the relationship between UPS dysfunction and human neurodegenerative disorders affecting the retina, including Alzheimer's, Parkinson's, and Huntington's diseases, are dealt with, together with numerous instances of retina-specific illnesses with UPS involvement, such as retinitis pigmentosa, macular degenerations, glaucoma, diabetic retinopathy (DR), and aging-related impairments. This information, though still basic and limited, constitutes a suitable framework to be expanded in incoming years and should prove orientative toward future therapy design targeting sight-affecting diseases with a UPS underlying basis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose. Transplantation of human central nervous system stem cells (HuCNS-SC) into the subretinal space of Royal College of Surgeons (RCS) rats preserves photoreceptors and visual function. To explore possible mechanism(s) of action underlying this neuroprotective effect, we performed a detailed morphologic and ultrastructure analysis of HuCNS-SC transplanted retinas. Methods. The HuCNS-SC were transplanted into the subretinal space of RCS rats. Histologic examination of the transplanted retinas was performed by light and electron microscopy. Areas of the retina adjacent to HuCNS-SC graft (treated regions) were analyzed and compared to control sections obtained from the same retina, but distant from the transplant site (untreated regions). Results. The HuCNS-SC were detected as a layer of STEM 121 immunopositive cells in the subretinal space. In treated regions, preserved photoreceptor nuclei, as well as inner and outer segments were identified readily. In contrast, classic signs of degeneration were observed in the untreated regions. Interestingly, detailed ultrastructure analysis revealed a striking preservation of the photoreceptor–bipolar–horizontal cell synaptic contacts in the outer plexiform layer (OPL) of treated areas, in stark contrast with untreated areas. Finally, the presence of phagosomes and vesicles exhibiting the lamellar structure of outer segments also was detected within the cytosol of HuCNS-SC, indicating that these cells have phagocytic capacity in vivo. Conclusions. This study reveals the novel finding that preservation of specialized synaptic contacts between photoreceptors and second order neurons, as well as phagocytosis of photoreceptor outer segments, are potential mechanism(s) of HuCNS-SC transplantation, mediating functional rescue in retinal degeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This randomized and controlled trial investigated whether the increase in elite training at different altitudes altered the oxidative stress biomarkers of the nervous system. This is the first study to investigate four F4-neuroprostanes and four F2-dihomo-isoprostanes quantified in 24-hour urine. The quantification was carried out by Ultra High Pressure Liquid Chromatography-triple Quadrupole-Tandem Mass Spectrometry (UHPLC-QqQ-MS/MS). Sixteen elite triathletes agreed to participate in the project. They were randomized in two groups, a group submitted to Altitude Training (n=8) and a group submitted to Sea Level Training (n=8), with a Control group of non-athletes (n=8). After experimental period, the Altitude Training group triathletes gave significant data: 17-epi-17-F2t-dihomo-IsoP (from 5.2 ± 1.4 µg/mL 24 h-1 to 6.6 ± 0.6 µg/mL 24 h-1), ent-7(RS)-7-F2t-dihomo-IsoP (from 6.6 ± 1.7 µg/mL 24 h-1 to 8.6 ± 0.9 µg /mL 24 h-1), and ent-7-epi-7-F2t-dihomo-IsoP (from 8.4 ± 2.2 µg/mL 24 h-1 to 11.3 ± 1.8 µg/mL 24 h-1) increased, while, of the neuronal degeneration-related compounds, only 10-epi-10-F4t-NeuroP (8.4 ± 1.7 µg/mL 24 h-1) and 10-F4t-NeuroP (5.2 ± 2.9 µg/mL 24 h-1) were detected in this group. For the control group and sea level training groups, no significant changes had occurred at the end of the 2-weeks experimental period. Therefore, and as the main conclusion, the training at moderate altitude increased the F4-NeuroPs- and F2-dihomo-isoPs-related oxidative damage of the central nervous system (CNS) compared to similar training at sea level.