6 resultados para Louisiana State University and Agricultural and Mechanical College.
em Universidad de Alicante
Resumo:
In this work, particleboards manufactured with Oceanic Posidonia waste and bonded with cement are investigated. The particleboards are made with 3/1.5/0.5 parts of cement per part of Posidonia waste. The physical properties of bulk density, swelling, surface absorption, and dimensional changes due to relative humidity as well as the mechanical properties of modulus of elasticity, bending strength, surface soundness, perpendicular tensile strength and impact resistance are studied. In terms of the above properties, the best results were obtained for particleboards with high cement content and when the waste “leaves” are treated (crushed) before board fabrication, due to internal changes to the board structure under these conditions. Based on the results of fire tests, the particleboard is non-flammable without any fire-resistant treatment.
Resumo:
Edible active films based on sodium caseinate (SC) and calcium caseinate (CC) plasticized with glycerol (G) at three different concentrations and carvacrol (CRV) as active agent were prepared by solvent casting. Transparent films were obtained and their surfaces were analysed by optical microscopy and scanning electron microscopy (SEM). The influence of the addition of three different plasticizer concentrations was studied by determining tensile properties, while Fourier transformed infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) were used to evaluate the structural and thermal behavior of such films. The addition of glycerol resulted in a reduction in the elastic modulus and tensile strength, while some increase in the elongation at break was observed. In general terms, SC films showed flexibility higher than the corresponding CC counterparts. In addition, the presence of carvacrol caused further improvements in ductile properties suggesting the presence of stronger interactions between the protein matrix and glycerol, as it was also observed in thermal degradation studies. FTIR spectra of all films showed the characteristic bands and peaks corresponding to proteins as well as to primary and secondary alcohols. In summary, the best results regarding mechanical and structural properties for caseinates-based films containing carvacrol were found for the formulations with high glycerol concentrations.
Resumo:
This work discusses the results from tests which were performed in order to study the effect of high temperatures in the physical and mechanical properties of a calcarenite (San Julian's stone). Samples, previously heated at different temperatures (from 105 °C to 600 °C), were tested. Non-destructive tests (porosity and ultrasonic wave propagation) and destructive tests (uniaxial compressive strength and slake durability test) were performed over available samples. Furthermore, the tests were carried out under different conditions (i.e. air-cooled and water-cooled) in order to study the effect of the fire off method. The results show that uniaxial compressive strength and elastic parameters (i.e. elastic modulus and Poisson's ratio), decrease as the temperature increases for the tested range of temperatures. A reduction of the uniaxial compressive strength up to 35% and 50% is observed in air-cooled and water-cooled samples respectively when the samples are heated to 600 °C. Regarding the Young's modulus, a fall over 75% and 78% in air-cooled and water-cooled samples respectively is observed. Poisson's ratio also declines up to 44% and 68% with the temperature in air-cooled and water-cooled samples respectively. Slake durability index also exhibits a reduction with temperature. Other physical properties, closely related with the mechanical properties of the stone, are porosity, attenuation and propagation velocity of ultrasonic waves in the material. All exhibit considerable changes with temperature.
Resumo:
In this study, a new type of nanopigment, obtained from a nanoclay (NC) and a dye, was synthesized in the laboratory, and these nanopigments were used to color an ethylene vinyl acetate (EVA) copolymer. Several of these nanoclay-based pigments (NCPs) were obtained through variations in the cation exchange capacity (CEC) percentage of the NC exchanged with the dye and also including an ammonium salt. Composites of EVA and different amounts of the as-synthesized nanopigments were prepared in a melt-intercalation process. Then, the morphological, mechanical, thermal, rheological, and colorimetric properties of the samples were assessed. The EVA/NCP composites developed much better color properties than the samples containing only the dye, especially when both the dye and the ammonium salt were exchanged with NC. Their other properties were similar to those of more conventional EVA/NC composites.
Resumo:
In this study, a novel kind of hybrid pigment based on nanoclays and dyes was synthesized and characterized. These nanoclay-based pigments (NCPs) were prepared at the laboratory with sodium montmorillonite nanoclay (NC) and methylene blue (MB). The cation-exchange capacity of NC exchanged with MB was varied to obtain a wide color gamut. The synthesized nanopigments were thoroughly characterized. The NCPs were melt-mixed with linear low-density polyethylene (PE) with an internal mixer. Furthermore, samples with conventional colorants were prepared in the same way. Then, the properties (mechanical, thermal, and colorimetric) of the mixtures were assessed. The PE–NCP samples developed better color properties than those containing conventional colorants and used as references, and their other properties were maintained or improved, even at lower contents of dye compared to that with the conventional colorants.
Resumo:
Background: Gender inequalities in the exposure to work-related psychosocial hazards are well established. However, little is known about how welfare state regimes influence these inequalities. Objectives: To examine the relationship between welfare state regimes and gender inequalities in the exposure to work-related psychosocial hazards in Europe, considering occupational social class. Methods: We used a sample of 27, 465 workers from 28 European countries. Dependent variables were high strain, iso-strain, and effort-reward imbalance, and the independent was gender. We calculated the prevalence and prevalence ratio separately for each welfare state regime and occupational social class, using multivariate logistic regression models. Results: More female than male managers/professionals were exposed to: high strain, iso-strain, and effort–reward imbalance in Scandinavian [adjusted prevalence ratio (aPR) = 2·26; 95% confidence interval (95% CI): 1·87–2·75; 2·12: 1·72–2·61; 1·41: 1·15–1·74; respectively] and Continental regimes (1·43: 1·23–1·54; 1·51: 1·23–1·84; 1·40: 1·17–1·67); and to high strain and iso-strain in Anglo-Saxon (1·92: 1·40–2·63; 1·85: 1·30–2·64; respectively), Southern (1·43: 1·14–1·79; 1·60: 1·18–2·18), and Eastern regimes (1·56: 1·35–1·81; 1·53: 1·28–1·83). Conclusion: Gender inequalities in the exposure to work-related psychosocial hazards were not lower in those welfare state regimes with higher levels of universal social protection policies.