1 resultado para Load forecasting
em Universidad de Alicante
Filtro por publicador
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (6)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (14)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (8)
- ARCA - Repositório Institucional da FIOCRUZ (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (13)
- Aston University Research Archive (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (16)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (41)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (75)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (5)
- CentAUR: Central Archive University of Reading - UK (165)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (7)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (7)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (20)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (10)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Peer Publishing (2)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (7)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (50)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico do Porto, Portugal (42)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (26)
- Laboratório Nacional de Energia e Geologia - Portugal (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (5)
- Publishing Network for Geoscientific & Environmental Data (6)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (17)
- Repositório digital da Fundação Getúlio Vargas - FGV (21)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (107)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (6)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (28)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (12)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (35)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (5)
- Universidade Federal do Pará (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (63)
- Université de Montréal, Canada (6)
- University of Connecticut - USA (2)
- University of Michigan (1)
- University of Queensland eSpace - Australia (20)
Resumo:
This article uses data from the social survey Allbus 1998 to introduce a method of forecasting elections in a context of electoral volatility. The approach models the processes of change in electoral behaviour, exploring patterns in order to model the volatility expressed by voters. The forecast is based on the matrix of transition probabilities, following the logic of Markov chains. The power of the matrix, and the use of the mover-stayer model, is debated for alternative forecasts. As an example of high volatility, the model uses data from the German general election of 1998. The unification of two German states in 1990 caused the incorporation of around 15 million new voters from East Germany who had limited familiarity and no direct experience of the political culture in West Germany. Under these circumstances, voters were expected to show high volatility.