5 resultados para Liquid-solid Reactions
em Universidad de Alicante
Resumo:
The Surface Renewal Theory (SRT) is one of the most unfamiliar models in order to characterize fluid-fluid and fluid-fluid-solid reactions, which are of considerable industrial and academicals importance. In the present work, an approach to the resolution of the SRT model by numerical methods is presented, enabling the visualization of the influence of different variables which control the heterogeneous overall process. Its use in a classroom allowed the students to reach a great understanding of the process.
Resumo:
ESAT 2014. 27th European Symposium on Applied Thermodynamics, Eindhoven University of Technology, July 6-9, 2014.
Resumo:
Alkaline hydroxides, especially sodium and potassium hydroxides, are multi-million-ton per annum commodities and strong chemical bases that have large scale applications. Some of them are related with their consequent ability to degrade most materials, depending on the temperature used. As an example, these chemicals are involved in the manufacture of pulp and paper, textiles, biodiesels, soaps and detergents, acid gases removal (e.g., SO2) and others, as well as in many organic synthesis processes. Sodium and potassium hydroxides are strong and corrosive bases, but they are also very stable chemicals that can melt without decomposition, NaOH at 318ºC, and KOH at 360ºC. Hence, they can react with most materials, even with relatively inert ones such as carbon materials. Thus, at temperatures higher than 360ºC these melted hydroxides easily react with most types of carbon-containing raw materials (coals, lignocellulosic materials, pitches, etc.), as well as with most pure carbon materials (carbon fibers, carbon nanofibers and carbon nanotubes). This reaction occurs via a solid-liquid redox reaction in which both hydroxides (NaOH or KOH) are converted to the following main products: hydrogen, alkaline metals and alkaline carbonates, as a result of the carbon precursor oxidation. By controlling this reaction, and after a suitable washing process, good quality activated carbons (ACs), a classical type of porous materials, can be prepared. Such carbon activation by hydroxides, known since long time ago, continues to be under research due to the unique properties of the resulting activated carbons. They have promising high porosity developments and interesting pore size distributions. These two properties are important for new applications such as gas storage (e.g., natural gas or hydrogen), capture, storage and transport of carbon dioxide, electricity storage demands (EDLC-supercapacitors-) or pollution control. Because these applications require new and superior quality activated carbons, there is no doubt that among the different existing activating processes, the one based on the chemical reaction between the carbon precursor and the alkaline hydroxide (NaOH or KOH) gives the best activation results. The present article covers different aspects of the activation by hydroxides, including the characteristics of the resulting activated carbons and their performance in some environment-related applications. The following topics are discussed: i) variables of the preparation method, such as the nature of the hydroxide, the type of carbon precursor, the hydroxide/carbon precursor ratio, the mixing procedure of carbon precursor and hydroxide (impregnation of the precursor with a hydroxide solution or mixing both, hydroxide and carbon precursor, as solids), or the temperature and time of the reaction are discussed, analyzing their effect on the resulting porosity; ii) analysis of the main reactions occurring during the activation process, iii) comparative analysis of the porosity development obtained from different activation processes (e.g., CO2, steam, phosphoric acid and hydroxides activation); and iv) performance of the prepared activated carbon materials on a few applications, such as VOC removal, electricity and gas storages.
Resumo:
Quaternary ammonium-functionalized silica materials were synthesized and applied for solid-phase extraction (SPE) of aromatic amines, which are classified as priority pollutants by US Environmental Protection Agency. Hexamethylenetetramine used for silica surface modification for the first time was employed as SPE sorbent under normal phase conditions. Hexaminium-functionalized silica demonstrated excellent extraction efficiencies for o-toluidine, 4-ethylaniline and quinoline (recoveries 101–107%), while for N,N-dimethylaniline and N-isopropylaniline recoveries were from low to moderate (14–46%). In addition, the suitability of 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica as SPE sorbent was tested under normal phase conditions. The recoveries achieved for the five aromatic amines ranged from 89 to 99%. The stability of the sorbent was evaluated during and after 150 extractions. Coefficients of variation between 4.5 and 10.2% proved a high stability of the synthesized sorbent. Elution was carried out using acetonitrile in the case of hexaminium-functionalized silica and water for 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent. After the extraction the analytes were separated and detected by liquid chromatography ultraviolet detection (LC-UV). The retention mechanism of the materials was primarily based on polar hydrogen bonding and π–π interactions. Comparison made with activated silica proved the quaternary ammonium-functionalized materials to offer different selectivity and better extraction efficiencies for aromatic amines. Finally, 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent was successfully tested for the extraction of wastewater and soil samples.
Resumo:
The thermal decomposition of a solid recovered fuel has been studied using thermogravimetry, in order to get information about the main steps in the decomposition of such material. The study comprises two different atmospheres: inert and oxidative. The kinetics of decomposition is determined at three different heating rates using the same kinetic constants and model for both atmospheres at all the heating rates simultaneously. A good correlation of the TG data is obtained using three nth-order parallel reactions.