4 resultados para Linear perturbation theory,
em Universidad de Alicante
Resumo:
When individual quantum spins are placed in close proximity to conducting substrates, the localized spin is coupled to the nearby itinerant conduction electrons via Kondo exchange. In the strong coupling limit this can result in the Kondo effect — the formation of a correlated, many body singlet state — and a resulting renormalization of the density of states near the Fermi energy. However, even when Kondo screening does not occur, Kondo exchange can give rise to a wide variety of other phenomena. In addition to the well known renormalization of the g factor and the finite spin decoherence and relaxation times, Kondo exchange has recently been found to give rise to a newly discovered effect: the renormalization of the single ion magnetic anisotropy. Here we put these apparently different phenomena on equal footing by treating the effect of Kondo exchange perturbatively. In this formalism, the central quantity is ρJ, the product of the density of states at the Fermi energy ρ and the Kondo exchange constant J. We show that perturbation theory correctly describes the experimentally observed exchange induced shifts of the single spin excitation energies, demonstrating that Kondo exchange can be used to tune the effective magnetic anisotropy of a single spin.
Resumo:
In this paper, we propose a duality theory for semi-infinite linear programming problems under uncertainty in the constraint functions, the objective function, or both, within the framework of robust optimization. We present robust duality by establishing strong duality between the robust counterpart of an uncertain semi-infinite linear program and the optimistic counterpart of its uncertain Lagrangian dual. We show that robust duality holds whenever a robust moment cone is closed and convex. We then establish that the closed-convex robust moment cone condition in the case of constraint-wise uncertainty is in fact necessary and sufficient for robust duality. In other words, the robust moment cone is closed and convex if and only if robust duality holds for every linear objective function of the program. In the case of uncertain problems with affinely parameterized data uncertainty, we establish that robust duality is easily satisfied under a Slater type constraint qualification. Consequently, we derive robust forms of the Farkas lemma for systems of uncertain semi-infinite linear inequalities.
Resumo:
The theory and methods of linear algebra are a useful alternative to those of convex geometry in the framework of Voronoi cells and diagrams, which constitute basic tools of computational geometry. As shown by Voigt and Weis in 2010, the Voronoi cells of a given set of sites T, which provide a tesselation of the space called Voronoi diagram when T is finite, are solution sets of linear inequality systems indexed by T. This paper exploits systematically this fact in order to obtain geometrical information on Voronoi cells from sets associated with T (convex and conical hulls, tangent cones and the characteristic cones of their linear representations). The particular cases of T being a curve, a closed convex set and a discrete set are analyzed in detail. We also include conclusions on Voronoi diagrams of arbitrary sets.
Resumo:
Outliers are objects that show abnormal behavior with respect to their context or that have unexpected values in some of their parameters. In decision-making processes, information quality is of the utmost importance. In specific applications, an outlying data element may represent an important deviation in a production process or a damaged sensor. Therefore, the ability to detect these elements could make the difference between making a correct and an incorrect decision. This task is complicated by the large sizes of typical databases. Due to their importance in search processes in large volumes of data, researchers pay special attention to the development of efficient outlier detection techniques. This article presents a computationally efficient algorithm for the detection of outliers in large volumes of information. This proposal is based on an extension of the mathematical framework upon which the basic theory of detection of outliers, founded on Rough Set Theory, has been constructed. From this starting point, current problems are analyzed; a detection method is proposed, along with a computational algorithm that allows the performance of outlier detection tasks with an almost-linear complexity. To illustrate its viability, the results of the application of the outlier-detection algorithm to the concrete example of a large database are presented.