3 resultados para Life Cycle
em Universidad de Alicante
Resumo:
Poster presented in the 24th European Symposium on Computer Aided Process Engineering (ESCAPE 24), Budapest, Hungary, June 15-18, 2014.
Resumo:
In this work, we analyze the effect of incorporating life cycle inventory (LCI) uncertainty on the multi-objective optimization of chemical supply chains (SC) considering simultaneously their economic and environmental performance. To this end, we present a stochastic multi-scenario mixed-integer linear programming (MILP) coupled with a two-step transformation scenario generation algorithm with the unique feature of providing scenarios where the LCI random variables are correlated and each one of them has the desired lognormal marginal distribution. The environmental performance is quantified following life cycle assessment (LCA) principles, which are represented in the model formulation through standard algebraic equations. The capabilities of our approach are illustrated through a case study of a petrochemical supply chain. We show that the stochastic solution improves the economic performance of the SC in comparison with the deterministic one at any level of the environmental impact, and moreover the correlation among environmental burdens provides more realistic scenarios for the decision making process.
Resumo:
Traditionally, quantitative models that have studied households׳ portfolio choices have focused exclusively on the different risk properties of alternative financial assets. We introduce differences in liquidity across assets in the standard life-cycle model of portfolio choice. More precisely, in our model, stocks are subject to transaction costs, as considered in recent macroliterature. We show that when these costs are calibrated to match the observed infrequency of households׳ trading, the model is able to generate patterns of portfolio stock allocation over age and wealth that are constant or moderately increasing, thus more in line with the existing empirical evidence.