3 resultados para Laser Induced Incandescence
em Universidad de Alicante
Resumo:
The interface between a Pt(111) electrode and a room temperature ionic liquid, 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide, was investigated with the laser-induced temperature jump method. In this technique, the temperature of the interface is suddenly increased by applying short laser pulses. The change of the electrode potential caused by the thermal perturbation is measured under coulostatic conditions during the subsequent temperature relaxation. This change is mainly related to the reorganization of the solvent components near the electrode surface. The sign of the potential transient depends on the potential of the experiment. At high potential values, positive transients indicate a higher density of anions than cations close the surface, contributing negatively to the potential of the electrode. Decreasing the applied potential to sufficiently low values, the transient becomes negative, meaning that the density of cations becomes then higher at the surface of the electrode. The potential dependence of the interfacial response shows a marked hysteresis depending on the direction in which the applied potential is changed.
Resumo:
A rapid and efficient Dispersive Liquid–Liquid Microextraction (DLLME) followed by Laser-Induced Breakdown Spectroscopy detection (LIBS) was evaluated for simultaneous determination of Cr, Cu, Mn, Ni and Zn in water samples. Metals in the samples were extracted with tetrachloromethane as pyrrolidinedithiocarbamate (APDC) complexes, using vortex agitation to achieve dispersion of the extractant solvent. Several DLLME experimental factors affecting extraction efficiency were optimized with a multivariate approach. Under optimum DLLME conditions, DLLME-LIBS method was found to be of about 4.0–5.5 times more sensitive than LIBS, achieving limits of detection of about 3.7–5.6 times lower. To assess accuracy of the proposed DLLME-LIBS procedure, a certified reference material of estuarine water was analyzed.
Resumo:
The interface between Au(hkl) basal planes and the ionic liquid 1-Ethyl-2,3-dimethyl imidazolium bis(trifluoromethyl)sulfonil imide was investigated by using both cyclic voltammetry and laser-induced temperature jump. Cyclic voltammetry showed characteristic features, revealing surface sensitive processes at the interfaces Au(hkl)/[Emmim][Tf2N]. From laser-induced heating the potential of maximum entropy (pme) is determined. Pme is close to the potential of zero charge (pzc) and, therefore, the technique provides relevant interfacial information. The following order for the pme values has been found: Au(111) > Au(100) > Au(110). This order correlates well with work function data and values of pzc in aqueous solutions.