6 resultados para Laic or free

em Universidad de Alicante


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Improvement of the features of an enzyme is in many instances a pre-requisite for the industrial implementation of these exceedingly interesting biocatalysts. To reach this goal, the researcher may utilize different tools. For example, amination of the enzyme surface produces an alteration of the isoelectric point of the protein along with its chemical reactivity (primary amino groups are the most widely used to obtain the reaction of the enzyme with surfaces, chemical modifiers, etc.) and even its “in vivo” behavior. This review will show some examples of chemical (mainly modifying the carboxylic groups using the carbodiimide route), physical (using polycationic polymers like polyethyleneimine) and genetic amination of the enzyme surface. Special emphasis will be put on cases where the amination is performed to improve subsequent protein modifications. Thus, amination has been used to increase the intensity of the enzyme/support multipoint covalent attachment, to improve the interaction with cation exchanger supports or polymers, or to promote the formation of crosslinkings (both intra-molecular and in the production of crosslinked enzyme aggregates). In other cases, amination has been used to directly modulate the enzyme properties (both in immobilized or free form). Amination of the enzyme surface may also pursue other goals not related to biocatalysis. For example, it has been used to improve the raising of antibodies against different compounds (both increasing the number of haptamers per enzyme and the immunogenicity of the composite) or the ability to penetrate cell membranes. Thus, amination may be a very powerful tool to improve the use of enzymes and proteins in many different areas and a great expansion of its usage may be expected in the near future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recoverable (Sa)-binam-l-prolinamide in combination with benzoic acid is used as catalysts in the direct aldol reaction between cycloalkyl, alkyl, and α-functionalized ketones and aldehydes under solvent-free reaction conditions. Three different methods are assayed: simple conventional magnetic stirring, magnetic stirring after previous dissolution in THF and evaporation, and ball mill technique. These procedures allow one to reduce not only the amount of required ketone to 2 equiv but also the reaction time to give the aldol products with regio-, diastereo-, and enantioselectivities comparable to those in organic or aqueous solvents. Generally anti-isomers are mainly obtained with enantioselectivities up to 97%. The reaction can be carried out under these conditions also using aldehydes as nucleophiles, yielding after in situ reduction of the aldol products the corresponding chiral 1,3-diols with moderate to high enantioselectivities mainly as anti-isomers. The aldol reaction has been studied by the use of positive ESI-MS technique, providing the evidence of the formation of the corresponding enamine−iminium intermediates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wet unsupported and supported 1,1′-binaphthalene-2,2′-diamine (BINAM) derived prolinamides are efficient organocatalysts under solvent-free conditions at room temperature to perform the synthesis of chiral tacrine analogues in good yields (up to 93%) and excellent enantioselectivies (up to 96%). The Friedländer reaction involved in this process takes place with several cyclohexanone derivatives and 2-aminoaromatic aldehydes, and it is compatible with the presence of either electron-withdrawing or electron-donating groups at the aromatic ring of the 2-aminoaryl aldehyde derivatives used as electrophiles. The reaction can be extended to cyclopentanone derivatives, affording a regioisomeric but separable mixture of products. The use of the wet silica gel supported organocatalyst, under solvent-free conditions, for this process led to the expected product (up to 87% enantiomeric excess), with its reuse being possible at least up to five times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of proline as catalyst for the aldol process has given a boost to the development of organocatalysis as a research area. Since then, a plethora of organocatalysts of diverse structures have been developed for this and other organic transformations under different reaction conditions. The use of an organic molecule as catalyst to promote a reaction meets several principles of Green Chemistry. The implementation of solvent-free methodologies to carry out the aldol reaction was soon envisaged. These solvent-free processes can be performed using conventional magnetic stirring or applying ball milling techniques and are even compatible with the use of supported organocatalysts as promoters, which allows the recovery and reuse of the organocatalysts. In addition, other advantages such as the reduction of the required amount of nucleophile and the acceleration of the reaction are accomplished by using solvent-free conditions leading to a “greener” and more sustainable process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

13th Mediterranean Congress of Chemical Engineering (Sociedad Española de Química Industrial e Ingeniería Química, Fira Barcelona, Expoquimia), Barcelona, September 30-October 3, 2014

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dihydronaphthalenes were oxyarylated with o-iodophenols, in PEG-400 at 140 or 170 °C, leading regio- and stereoselectively to 5-carbapterocarpans. By using Pd(OAc)2 (5–10 mol%) as precatalyst and Ag2CO3 (1.1 equiv) as base (conditions A), products were obtained in good to excellent chemical yields, in 5–30 minutes, irrespective of the pattern of substitution the starting materials. Alternatively, when p-hydroxyacetophenone oxime derived palladacycle (1 mol%) was used as precatalyst, and dicyclohexylamine (2 equiv) was used as base (silver-free, conditions B), the corresponding adducts were obtained in moderate to good yields, in 0.5 to 4 hours. Finally, the oxyarylation of dihydronaphthalenes­ and chromenquinone with o-iodophenols and 3-iodolawsone in PEG-400 under conditions A led regio- and stereoselectively to the formation of carbapterocarpanquinones and pterocarpanquinones in moderate yield.