7 resultados para LECTIN-LIKE PROPERTIES
em Universidad de Alicante
Resumo:
Purpose – This research deals with a new kind of nanopigment, obtained from the combination of organic dyes and layered nanoclays, that the authors call nanoclay-colorant pigment (NCP). Whilst they have already been employed in inks and coatings, to date these nanopigments have not been used as pigments for polymers. The existing lack of knowledge surrounding them must be redressed in order to bridge the gap between current academic studies and commercial exploitation. Therefore, the main purpose of this paper is to examine the hitherto unknown aspects of the NCP, which relate specifically to their applicability as a new type of colorant for polymers. Design/methodology/approach – A blue NCP has been prepared at the laboratory according to the patented method of synthesis (patent WO0104216), using methylene blue and montmorillonite nanoclay. It has then been applied to a thermoplastic polymer (linear low-density polyethylene – LLDPE) to obtain a coloured sample. Furthermore, samples with the same polymer but using conventional blue colorants have been prepared under the same processing conditions. The mechanical, thermal and colorimetric properties of these materials have been compared. Findings – The thermal stability of the sample coloured with NCP is reduced to some extent, while the mechanical strength is slightly increased. Moreover, this sample has better colour performance than the conventionally pigmented samples. Originality/value – In this paper, a blue NCP has been synthesised and successfully employed with polyethylene and the obtained sample shows better colour performance than polyethylene with conventional pigments.
Resumo:
Biopolymers, such as poly(lactic acid) (PLA), have been proposed as environmentally-friendly alternatives in applications such as food packaging. In this work, silver nanoparticles and thymol were used as active additives in PLA matrices, combining the antibacterial activity of silver with the antioxidant performance of thymol. The combined action of both additives influenced PLA thermal degradation in ternary systems. DSC results showed that the addition of thymol resulted in a clear decrease of the glass transition temperature (Tg) of PLA, suggesting its plasticizing effect in PLA matrices. Slight modifications in mechanical properties of dog-bone bars were also observed after the addition of the active components, especially in the elastic modulus. FESEM analyses showed the good distribution of active additives through the PLA matrix, obtaining homogenous surfaces and highlighting the presence of silver nanoparticles successfully embedded into the bulk matrix. Degradation of these PLA-based nanocomposites with thymol and silver nanoparticles in composting conditions indicated that the inherent biodegradable character of this biopolymer was improved after this modification. The obtained nanocomposites showed suitable properties to be used as biodegradable active-food packaging systems with antioxidant and antimicrobial effects.
Resumo:
In the present paper, changes in mechanical properties of Portland cement-based mortars due to the addition of carbon nanotubes (CNT) and corrosion of embedded steel rebars in CNT cement pastes are reported. Bending strength, compression strength, porosity and density of mortars were determined and related to the CNT dosages. CNT cement paste specimens were exposed to carbonation and chloride attacks, and results on steel corrosion rate tests were related to CNT dosages. The increase in CNT content implies no significant variations of mechanical properties but higher steel corrosion intensities were observed.
Resumo:
In this work, montmorillonite (Mt) has been organically modified with ethyl hexadecyl dimethyl ammonium (EHDDMA) in 20, 50, 80 and 100% of the nominal exchange capacity (CEC) of the Mt. A full characterization of the organo-montmorillonite (OMt) obtained has been made, including thermal analysis, X-Ray Diffraction, elemental analysis CHN and nitrogen adsorption. According to the results, 12% in mass of the surfactant added is strongly retained by the Mt. When the mass percentage of EHDDMA exchanged in the OMt is increased up to this level, the interactions OMt–EHDDMA are steeply reduced depending on the EHDDMA content. Clay polymer nanocomposites (CPN) were prepared by melt mixing of EVA and different loads of OMt. The CPN were compress molded to obtain 1 mm thick sheets, which have been characterized according to their mechanical, thermal and rheological behaviors. The major changes in the structure of the OMt are obtained for low contents of EHDDMA. Nevertheless, the CPN containing OMt exchanged at 20 and 50% of the CEC show relatively low effect of the EHDDMA while the mechanical response and rheological behavior of CPN with OMt modified at 80 and 100% of the CEC are much more pronounced.
Resumo:
A high percentage of hydrocarbon (HC) emissions from gasoline vehicles occur during the cold-start period. Among the alternatives proposed to reduce these HC emissions, the use of zeolites before the three-way catalyst (TWC) is thought to be very effective. Zeolites are the preferred adsorbents for this application; however, to avoid high pressure drops, supported zeolites are needed. In this work, two coating methods (dip-coating and in situ crystallization) are optimized to prepare BETA zeolite thin films supported on honeycomb monoliths with tunable properties. The important effect of the density of the thin film in the final performance as a HC trap is demonstrated. A highly effective HC trap is prepared showing 100 % toluene retention, accomplishing the desired performance as a HC trap, desorbing propene at temperatures close to 300 °C, and remaining stable after cycling. The use of this material before the TWC is very promising, and works towards achieving the sustainability and environmental protection goals.
Resumo:
The edges of graphene and graphene like systems can host localized states with evanescent wave function with properties radically different from those of the Dirac electrons in bulk. This happens in a variety of situations, that are reviewed here. First, zigzag edges host a set of localized non-dispersive state at the Dirac energy. At half filling, it is expected that these states are prone to ferromagnetic instability, causing a very interesting type of edge ferromagnetism. Second, graphene under the influence of external perturbations can host a variety of topological insulating phases, including the conventional quantum Hall effect, the quantum anomalous Hall (QAH) and the quantum spin Hall phase, in all of which phases conduction can only take place through topologically protected edge states. Here we provide an unified vision of the properties of all these edge states, examined under the light of the same one orbital tight-binding model. We consider the combined action of interactions, spin–orbit coupling and magnetic field, which produces a wealth of different physical phenomena. We briefly address what has been actually observed experimentally.
Resumo:
Remaining silicon in SiC-based materials produced via reactive infiltration limits their use in high-temperature applications due to the poor mechanical properties of silicon: low fracture toughness, extreme fragility and creep phenomena above 1000 °C. In this paper SiC–FeSi2 composites are fabricated by reactive infiltration of Si–Fe alloys into porous Cf/C preforms. The resulting materials are SiC/FeSi2 composites, in which remaining silicon is reduced by formation of FeSi2. For the richest Fe alloys (35 wt% Fe) a nominal residual silicon content below 1% has been observed. However this, the relatively poor mechanical properties (bending strength) measured for those resulting materials can be explained by the thermal mismatch of FeSi2 and SiC, which weakens the interface and does even generate new porosity, associated with a debonding phenomenon between the two phases.