3 resultados para Knowledge based urban development

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extension to new languages is a well known bottleneck for rule-based systems. Considerable human effort, which typically consists in re-writing from scratch huge amounts of rules, is in fact required to transfer the knowledge available to the system from one language to a new one. Provided sufficient annotated data, machine learning algorithms allow to minimize the costs of such knowledge transfer but, up to date, proved to be ineffective for some specific tasks. Among these, the recognition and normalization of temporal expressions still remains out of their reach. Focusing on this task, and still adhering to the rule-based framework, this paper presents a bunch of experiments on the automatic porting to Italian of a system originally developed for Spanish. Different automatic rule translation strategies are evaluated and discussed, providing a comprehensive overview of the challenge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Answer Validation Exercise (AVE) is a pilot track within the Cross-Language Evaluation Forum (CLEF) 2006. The AVE competition provides an evaluation frame- work for answer validations in Question Answering (QA). In our participation in AVE, we propose a system that has been initially used for other task as Recognising Textual Entailment (RTE). The aim of our participation is to evaluate the improvement our system brings to QA. Moreover, due to the fact that these two task (AVE and RTE) have the same main idea, which is to find semantic implications between two fragments of text, our system has been able to be directly applied to the AVE competition. Our system is based on the representation of the texts by means of logic forms and the computation of semantic comparison between them. This comparison is carried out using two different approaches. The first one managed by a deeper study of the Word- Net relations, and the second uses the measure defined by Lin in order to compute the semantic similarity between the logic form predicates. Moreover, we have also designed a voting strategy between our system and the MLEnt system, also presented by the University of Alicante, with the aim of obtaining a joint execution of the two systems developed at the University of Alicante. Although the results obtained have not been very high, we consider that they are quite promising and this supports the fact that there is still a lot of work on researching in any kind of textual entailment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plane model extraction from three-dimensional point clouds is a necessary step in many different applications such as planar object reconstruction, indoor mapping and indoor localization. Different RANdom SAmple Consensus (RANSAC)-based methods have been proposed for this purpose in recent years. In this study, we propose a novel method-based on RANSAC called Multiplane Model Estimation, which can estimate multiple plane models simultaneously from a noisy point cloud using the knowledge extracted from a scene (or an object) in order to reconstruct it accurately. This method comprises two steps: first, it clusters the data into planar faces that preserve some constraints defined by knowledge related to the object (e.g., the angles between faces); and second, the models of the planes are estimated based on these data using a novel multi-constraint RANSAC. We performed experiments in the clustering and RANSAC stages, which showed that the proposed method performed better than state-of-the-art methods.