3 resultados para Kinematic constraints
em Universidad de Alicante
Resumo:
The origin of the Numidian Formation (latest Oligocene to middle Miocene), characterized by ultra-mature quartzose arenites with abundant well-rounded frosted quartz grains, remains controversial. This formation, sedimented in the external domain of the Maghrebian Flysch Basin, displays three characteristic stratigraphic members with marked longitudinal (proximal–distal) and transverse (along-chain) variations with palaeogeographical importance. The origin of the Numidian supply is related to the outward tectogenetic propagation when a forebulge evolved in the African foreland, leading to the erosion of African cratonic areas rich in quartzose arenites (Nubian Sandstone-like). The ages of the Numidian Formation checked by Betic, Maghrebian and Southern Apennine data suggest a timing for the accretionary orogenic wedge, earlier in the Betic-Rifian Arc (after middle Burdigalian), later in the Algerian-Tunisian Tell (after late Burdigalian) and afterwards in Sicily and the Southern Apennines (after Langhian). A geodynamic evolutionary model for the central-western Mediterranean is proposed.
Resumo:
This work presents a 3D geometric model of growth strata cropping out in a fault-propagation fold associated with the Crevillente Fault (Abanilla-Alicante sector) from the Bajo Segura Basin (eastern Betic Cordillera, southern Spain). The analysis of this 3D model enables us to unravel the along-strike and along-section variations of the growth strata, providing constraints to assess the fold development, and hence, the fault kinematic evolution in space and time. We postulate that the observed along-strike dip variations are related to lateral variation in fault displacement. Along-section variations of the progressive unconformity opening angles indicate greater fault slip in the upper Tortonian–Messinian time span; from the Messinian on, quantitative analysis of the unconformity indicate a constant or lower tectonic activity of the Crevillente Fault (Abanilla-Alicante sector); the minor abundance of striated pebbles in the Pliocene-Quaternary units could be interpreted as a decrease in the stress magnitude and consequently in the tectonic activity of the fault. At a regional scale, comparison of the growth successions cropping out in the northern and southern limits of the Bajo Segura Basin points to a southward migration of deformation in the basin. This means that the Bajo Segura Fault became active after the Crevillente Fault (Abanilla-Alicante sector), for which activity on the latter was probably decreasing according to our data. Consequently, we propose that the seismic hazard at the northern limit of the Bajo Segura Basin should be lower than at the southern limit.