3 resultados para K-MEANS
em Universidad de Alicante
Resumo:
Plane model extraction from three-dimensional point clouds is a necessary step in many different applications such as planar object reconstruction, indoor mapping and indoor localization. Different RANdom SAmple Consensus (RANSAC)-based methods have been proposed for this purpose in recent years. In this study, we propose a novel method-based on RANSAC called Multiplane Model Estimation, which can estimate multiple plane models simultaneously from a noisy point cloud using the knowledge extracted from a scene (or an object) in order to reconstruct it accurately. This method comprises two steps: first, it clusters the data into planar faces that preserve some constraints defined by knowledge related to the object (e.g., the angles between faces); and second, the models of the planes are estimated based on these data using a novel multi-constraint RANSAC. We performed experiments in the clustering and RANSAC stages, which showed that the proposed method performed better than state-of-the-art methods.
Resumo:
Array measurements have become a valuable tool for site response characterization in a non-invasive way. The array design, i.e. size, geometry and number of stations, has a great influence in the quality of the obtained results. From the previous parameters, the number of available stations uses to be the main limitation for the field experiments, because of the economical and logistical constraints that it involves. Sometimes, from the initially planned array layout, carefully designed before the fieldwork campaign, one or more stations do not work properly, modifying the prearranged geometry. Whereas other times, there is not possible to set up the desired array layout, because of the lack of stations. Therefore, for a planned array layout, the number of operative stations and their arrangement in the array become a crucial point in the acquisition stage and subsequently in the dispersion curve estimation. In this paper we carry out an experimental work to analyze which is the minimum number of stations that would provide reliable dispersion curves for three prearranged array configurations (triangular, circular with central station and polygonal geometries). For the optimization study, we analyze together the theoretical array responses and the experimental dispersion curves obtained through the f-k method. In the case of the f-k method, we compare the dispersion curves obtained for the original or prearranged arrays with the ones obtained for the modified arrays, i.e. the dispersion curves obtained when a certain number of stations n is removed, each time, from the original layout of X geophones. The comparison is evaluated by means of a misfit function, which helps us to determine how constrained are the studied geometries by stations removing and which station or combination of stations affect more to the array capability when they are not available. All this information might be crucial to improve future array designs, determining when it is possible to optimize the number of arranged stations without losing the reliability of the obtained results.
Resumo:
The (vapor + liquid), (liquid + liquid) and (vapor + liquid + liquid) equilibria of the ternary system (water + 1-butanol + p-xylene) have been determined. (Water + 1-butanol + p-xylene) is a type 2 heterogeneous ternary system with partially miscible (water + 1-butanol) and (water + p-xylene) pairs. By contrast, (1-butanol + p-xylene) is totally miscible under atmospheric conditions. This paper examines the (vapor + liquid) equilibrium in both heterogeneous and homogeneous regions at 101.3 kPa of pressure. (Liquid + liquid) equilibrium data at T = 313.15 K have also been determined, and for comparison, the obtained experimental data have been calculated by means of several thermodynamic models: UNIQUAC, UNIFAC and NRTL. Some discrepancies were found between the (vapor + liquid + liquid) correlations; however, the models reproduced the (liquid + liquid) equilibrium data well. The obtained data reveal a ternary heterogeneous azeotrope with mole fraction composition: 0.686 water, 0.146 1-butanol and 0.168 p-xylene.