5 resultados para Juan Enrique Acuña
em Universidad de Alicante
Resumo:
A nonempty set F is called Motzkin decomposable when it can be expressed as the Minkowski sum of a compact convex set C with a closed convex cone D. In that case, the sets C and D are called compact and conic components of F. This paper provides new characterizations of the Motzkin decomposable sets involving truncations of F (i.e., intersections of FF with closed halfspaces), when F contains no lines, and truncations of the intersection F̂ of F with the orthogonal complement of the lineality of F, otherwise. In particular, it is shown that a nonempty closed convex set F is Motzkin decomposable if and only if there exists a hyperplane H parallel to the lineality of F such that one of the truncations of F̂ induced by H is compact whereas the other one is a union of closed halflines emanating from H. Thus, any Motzkin decomposable set F can be expressed as F=C+D, where the compact component C is a truncation of F̂. These Motzkin decompositions are said to be of type T when F contains no lines, i.e., when C is a truncation of F. The minimality of this type of decompositions is also discussed.
Resumo:
Durante el curso 2013-2014 se implementó en la asignatura de Fisiología Animal I, del Grado en Biología de la Universidad de Alicante, un entorno personal de aprendizaje (EPA), a partir de la herramienta Scliped. Esta herramienta permitió desarrollar una red social de contenidos seleccionados por el profesorado, como estrategia docente para poner a disposición del alumnado recursos de excelencia que faciliten su aprendizaje. La inversión de tiempo y dinero requerida fue sensiblemente inferior a la necesaria para el desarrollo de materiales específicos equivalentes. El alumnado tuvo a su disposición un tablero de 130 contenidos seleccionados, distribuidos en 34 colecciones. Al finalizar el curso escolar 2013-2014, el EPA había recibido un total de 60.794 visitas. La evaluación del uso y conformidad del alumnado con esta herramienta mostró que, si bien opinaban que su uso era innovador, no podría sustituir la labor del profesorado. El porcentaje de adhesión a la herramienta fue bajo, tan sólo el 16% del alumnado encuestado, sin embargo, este grupo declaró que el uso de Scliped era sencillo y atractivo, que los contenidos eran pertinentes y estaban bien organizados, y que les habían facilitado el estudio y la comprensión de la materia.
Resumo:
Ivermectin is a veterinary pharmaceutical generally used to control the ecto- and endoparasites of livestock, but its use has resulted in adverse effects on coprophilous insects, causing population decline and biodiversity loss. There is currently no information regarding the direct effects of ivermectin on dung beetle physiology and behaviour. Here, based on electroantennography and spontaneous muscle force tests, we show sub-lethal disorders caused by ivermectin in sensory and locomotor systems of Scarabaeus cicatricosus, a key dung beetle species in Mediterranean ecosystems. Our findings show that ivermectin decreases the olfactory and locomotor capacity of dung beetles, preventing them from performing basic biological activities. These effects are observed at concentrations lower than those usually measured in the dung of treated livestock. Taking into account that ivermectin acts on both glutamate-gated and GABA-gated chloride ion channels of nerve and muscle cells, we predict that ivermectin’s effects at the physiological level could influence many members of the dung pat community. The results indicate that the decline of dung beetle populations could be related to the harmful effects of chemical contamination in the dung.
Resumo:
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) produced in huge quantities in the manufacture of polycarbonate plastics and epoxy resins. It is present in most humans in developed countries, acting as a xenoestrogen and it is considered an environmental risk factor associated to several diseases. Among the whole array of identified mechanisms by which BPA can interfere with physiological processes in living organisms, changes on ion channel activity is one of the most poorly understood. There is still little evidence about BPA regulation of ion channel expression and function. However, this information is key to understand how BPA disrupts excitable and non-excitable cells, including neurons, endocrine cells and muscle cells. This report is the result of a comprehensive literature review on the effects of BPA on ion channels. We conclude that there is evidence to say that these important molecules may be key end-points for EDCs acting as xenoestrogens. However, more research on channel-mediated BPA effects is needed. Particularly, mechanistic studies to unravel the pathophysiological actions of BPA on ion channels at environmentally relevant doses.