3 resultados para Iron research
em Universidad de Alicante
Resumo:
Polyaniline/montmorillonite nanocomposites (PANI/M) were obtained by intercalation of aniline monomer into M modified with different cations and subsequent oxidative polymerization of the aniline. The modified-clay was prepared by ion exchange of sodium, copper and iron cations in the clay (Na–M, Cu–M and Fe–M respectively). Infrared spectroscopy confirms the electrostatic interaction between the oxidized PANI and the negatively charged surface of the clay. X-ray diffraction analysis provides structural information of the prepared materials. The nanocomposites were characterized by transmission electron microscopy and their thermal degradation was investigated by thermogravimetric analysis. The weight loss suggests that the PANI chains in the nanocomposites have higher thermal stability than pure PANI. The electrical conductivity of the nanocomposites increased between 12 and 24 times with respect to the pure M and this increase was dependent on the cation-modification. The electrochemical behavior of the polymers extracted from the nanocomposites was studied by cyclic voltammetry and a good electrochemical response was observed.
Resumo:
The siloxanes present in the biogas produced during anaerobic digestion damage the mechanism of cogeneration equipment and, consequently, negatively affect the energy valorization process. For this reason, the detection and elimination of these silicon-derived chemical compounds are a priority in the management of cogeneration facilities. In this regard, the objectives of this paper are, firstly, to characterize the siloxanes in the biogas and, secondly, to qualitatively evaluate the influence of the dose of iron chloride on its elimination. The research was performed at the Rincón de León Wastewater Treatment Plant (Alicante, Spain). The outflow biogas of the digesters and of the pressurized gasometers was sampled and analyzed. The results obtained made it possible to demonstrate, firstly, the absence of linear siloxanes and that, of the cyclic siloxanes, the predominant type was decamethylcyclopentasiloxane, and, secondly, that the addition of iron chloride in the digesters significantly reduces the siloxane content in the biogas. Additionally, it was demonstrated that the process of compression of the biogas, with the elimination of condensates, also produces significant reductions in the concentration of siloxanes in the biogas.
Resumo:
Zero valent iron nanoparticles (nZVI) represent a promising agent for environmental remediation. Nevertheless, their application presents some limitations regarding their rapid oxidation and aggregation in the media. The aim of this study was to determine the effect that nZVI aging has in heavy metal remediation in water. Contaminants studied were Zn, Cd, Ni, Cu and Cr, which are typical elements found in ground and wastewater. Results show a high contaminant removal capacity by the nZVI in the first 2 h of reaction. Nevertheless, for longer reaction times, some of the metal ions that had already been adsorbed in the nZVI were delivered to the water. Cd and Ni show the maximum delivery percentages (65 and 27% respectively after 21 days of contact time). The starting delivery time was shortened when applying lower nZVI amounts. No re-dissolution of Cr was observed in any circumstance because it was the only element incorporated into the nanoparticles core, as TEM images showed. Contaminant release from nZVI is probably due to nanoparticles oxidation caused by aging, which produced a pH decrease and nZVI surface crystallization.