8 resultados para Interpolation map
em Universidad de Alicante
Resumo:
Comunicación presentada en el IX Workshop de Agentes Físicos (WAF'2008), Vigo, 11-12 septiembre 2008.
Resumo:
A new methodology is proposed to produce subsidence activity maps based on the geostatistical analysis of persistent scatterer interferometry (PSI) data. PSI displacement measurements are interpolated based on conditional Sequential Gaussian Simulation (SGS) to calculate multiple equiprobable realizations of subsidence. The result from this process is a series of interpolated subsidence values, with an estimation of the spatial variability and a confidence level on the interpolation. These maps complement the PSI displacement map, improving the identification of wide subsiding areas at a regional scale. At a local scale, they can be used to identify buildings susceptible to suffer subsidence related damages. In order to do so, it is necessary to calculate the maximum differential settlement and the maximum angular distortion for each building of the study area. Based on PSI-derived parameters those buildings in which the serviceability limit state has been exceeded, and where in situ forensic analysis should be made, can be automatically identified. This methodology has been tested in the city of Orihuela (SE Spain) for the study of historical buildings damaged during the last two decades by subsidence due to aquifer overexploitation. The qualitative evaluation of the results from the methodology carried out in buildings where damages have been reported shows a success rate of 100%.
Resumo:
This paper presents a method to interpolate a periodic band-limited signal from its samples lying at nonuniform positions in a regular grid, which is based on the FFT and has the same complexity order as this last algorithm. This kind of interpolation is usually termed “the missing samples problem” in the literature, and there exists a wide variety of iterative and direct methods for its solution. The one presented in this paper is a direct method that exploits the properties of the so-called erasure polynomial and provides a significant improvement on the most efficient method in the literature, which seems to be the burst error recovery (BER) technique of Marvasti’s The paper includes numerical assessments of the method’s stability and complexity.
Resumo:
The economic design of a distillation column or distillation sequences is a challenging problem that has been addressed by superstructure approaches. However, these methods have not been widely used because they lead to mixed-integer nonlinear programs that are hard to solve, and require complex initialization procedures. In this article, we propose to address this challenging problem by substituting the distillation columns by Kriging-based surrogate models generated via state of the art distillation models. We study different columns with increasing difficulty, and show that it is possible to get accurate Kriging-based surrogate models. The optimization strategy ensures that convergence to a local optimum is guaranteed for numerical noise-free models. For distillation columns (slightly noisy systems), Karush–Kuhn–Tucker optimality conditions cannot be tested directly on the actual model, but still we can guarantee a local minimum in a trust region of the surrogate model that contains the actual local minimum.
Resumo:
Subsidence is a hazard that may have natural or anthropogenic origin causing important economic losses. The area of Murcia city (SE Spain) has been affected by subsidence due to groundwater overexploitation since the year 1992. The main observed historical piezometric level declines occurred in the periods 1982–1984, 1992–1995 and 2004–2008 and showed a close correlation with the temporal evolution of ground displacements. Since 2008, the pressure recovery in the aquifer has led to an uplift of the ground surface that has been detected by the extensometers. In the present work an elastic hydro-mechanical finite element code has been used to compute the subsidence time series for 24 geotechnical boreholes, prescribing the measured groundwater table evolution. The achieved results have been compared with the displacements estimated through an advanced DInSAR technique and measured by the extensometers. These spatio-temporal comparisons have showed that, in spite of the limited geomechanical data available, the model has turned out to satisfactorily reproduce the subsidence phenomenon affecting Murcia City. The model will allow the prediction of future induced deformations and the consequences of any piezometric level variation in the study area.
Resumo:
Superstructure approaches are the solution to the difficult problem which involves the rigorous economic design of a distillation column. These methods require complex initialization procedures and they are hard to solve. For this reason, these methods have not been extensively used. In this work, we present a methodology for the rigorous optimization of chemical processes implemented on a commercial simulator using surrogate models based on a kriging interpolation. Several examples were studied, but in this paper, we perform the optimization of a superstructure for a non-sharp separation to show the efficiency and effectiveness of the method. Noteworthy that it is possible to get surrogate models accurate enough with up to seven degrees of freedom.
Resumo:
Teachers are deeply concerned on how to be more effective in our task of teaching. We must organize the contents of our specific area providing them with a logical configuration, for which we must know the mental structure of the students that we have in the classroom. We must shape this mental structure, in a progressive manner, so that they can assimilate the contents that we are trying to transfer, to make the learning as meaningful as possible. In the generative learning model, the links before the stimulus delivered by the teacher and the information stored in the mind of the learner requires an important effort by the student, who should build new conceptual meanings. That effort, which is extremely necessary for a good learning, sometimes is the missing ingredient so that the teaching-learning process can be properly assimilated. In electrical circuits, which we know are perfectly controlled and described by Ohm's law and Kirchhoff's two rules, there are two concepts that correspond to the following physical quantities: voltage and electrical resistance. These two concepts are integrated and linked when the concept of current is presented. This concept is not subordinated to the previous ones, it has the same degree of inclusiveness and gives rise to substantial relations between the three concepts, materializing it into a law: The Ohm, which allows us to relate and to calculate any of the three physical magnitudes, two of them known. The alternate current, in which both the voltage and the current are reversed dozens of times per second, plays an important role in many aspects of our modern life, because it is universally used. Its main feature is that its maximum voltage is easily modifiable through the use of transformers, which greatly facilitates its transfer with very few losses. In this paper, we present a conceptual map so that it is used as a new tool to analyze in a logical manner the underlying structure in the alternate current circuits, with the objective of providing the students from Sciences and Engineering majors with another option to try, amongst all, to achieve a significant learning of this important part of physics.
Resumo:
In many classification problems, it is necessary to consider the specific location of an n-dimensional space from which features have been calculated. For example, considering the location of features extracted from specific areas of a two-dimensional space, as an image, could improve the understanding of a scene for a video surveillance system. In the same way, the same features extracted from different locations could mean different actions for a 3D HCI system. In this paper, we present a self-organizing feature map able to preserve the topology of locations of an n-dimensional space in which the vector of features have been extracted. The main contribution is to implicitly preserving the topology of the original space because considering the locations of the extracted features and their topology could ease the solution to certain problems. Specifically, the paper proposes the n-dimensional constrained self-organizing map preserving the input topology (nD-SOM-PINT). Features in adjacent areas of the n-dimensional space, used to extract the feature vectors, are explicitly in adjacent areas of the nD-SOM-PINT constraining the neural network structure and learning. As a study case, the neural network has been instantiate to represent and classify features as trajectories extracted from a sequence of images into a high level of semantic understanding. Experiments have been thoroughly carried out using the CAVIAR datasets (Corridor, Frontal and Inria) taken into account the global behaviour of an individual in order to validate the ability to preserve the topology of the two-dimensional space to obtain high-performance classification for trajectory classification in contrast of non-considering the location of features. Moreover, a brief example has been included to focus on validate the nD-SOM-PINT proposal in other domain than the individual trajectory. Results confirm the high accuracy of the nD-SOM-PINT outperforming previous methods aimed to classify the same datasets.