4 resultados para Interaction with Traffic
em Universidad de Alicante
Resumo:
New low cost sensors and the new open free libraries for 3D image processing are permitting to achieve important advances for robot vision applications such as tridimensional object recognition, semantic mapping, navigation and localization of robots, human detection and/or gesture recognition for human-machine interaction. In this paper, a method to recognize the human hand and to track the fingers is proposed. This new method is based on point clouds from range images, RGBD. It does not require visual marks, camera calibration, environment knowledge and complex expensive acquisition systems. Furthermore, this method has been implemented to create a human interface in order to move a robot hand. The human hand is recognized and the movement of the fingers is analyzed. Afterwards, it is imitated from a Barret hand, using communication events programmed from ROS.
Resumo:
This paper analyzes the learning experiences and opinions obtained from a group of undergraduate students in their interaction with several on-line multimedia resources included in a free on-line course about Computer Networks. These new educational resources employed are based on the Web2.0 approach such as blogs, videos and virtual labs which have been added in a web-site for distance self-learning.
Resumo:
The optimal integration of work and its interaction with heat can represent large energy savings in industrial plants. This paper introduces a new optimization model for the simultaneous synthesis of work exchange networks (WENs), with heat integration for the optimal pressure recovery of process gaseous streams. The proposed approach for the WEN synthesis is analogous to the well-known problem of synthesis of heat exchanger networks (HENs). Thus, there is work exchange between high-pressure (HP) and low-pressure (LP) streams, achieved by pressure manipulation equipment running on common axes. The model allows the use of several units of single-shaft-turbine-compressor (SSTC), as well as stand-alone compressors, turbines and valves. Helper motors and generators are used to respond to any demand and excess of energy. Moreover, between the WEN stages the streams are sent to the HEN to promote thermal recovery, aiming to enhance the work integration. A multi-stage superstructure is proposed to represent the process. The WEN superstructure is optimized in a mixed-integer nonlinear programming (MINLP) formulation and solved with the GAMS software, with the goal of minimizing the total annualized cost. Three examples are conducted to verify the accuracy of the proposed method. In all case studies, the heat integration between WEN stages is essential to improve the pressure recovery, and to reduce the total costs involved in the process.
Resumo:
The electronic properties of hematite were investigated by means of synchrotron radiation photoemission (SR-PES) and X-ray absorption spectroscopy (XAS). Hematite samples were exposed to trimethyl aluminum (TMA) pulses, a widely used Al-precursor for the atomic layer deposition (ALD) of Al2O3. SR-PES and XAS showed that the electronic properties of hematite were modified by the interaction with TMA. In particular, the hybridization of O 2p states with Fe 3d and Fe 4s4p changed upon TMA pulses due to electron inclusion as polarons. The change of hybridization correlates with an enhancement of the photocurrent density due to water oxidation for the hematite electrodes. Such an enhancement has been associated with an improvement in charge carrier transport. Our findings open new perspectives for the understanding and utilization of electrode modifications by very thin ALD films and show that the interactions between metal precursors and substrates seem to be important factors in defining their electronic and photoelectrocatalytic properties.