2 resultados para Inter Session Variability Modelling

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

From a set of gonioapparent automotive samples from different manufacturers we selected 28 low-chroma color pairs with relatively small color differences predominantly in lightness. These color pairs were visually assessed with a gray scale at six different viewing angles by a panel of 10 observers. Using the Standardized Residual Sum of Squares (STRESS) index, the results of our visual experiment were tested against predictions made by 12 modern color-difference formulas. From a weighted STRESS index accounting for the uncertainty in visual assessments, the best prediction of our whole experiment was achieved using AUDI2000, CAM02-SCD, CAM02-UCS and OSA-GP-Euclidean color-difference formulas, which were no statistically significant different among them. A two-step optimization of the original AUDI2000 color-difference formula resulted in a modified AUDI2000 formula which performed both, significantly better than the original formula and below the experimental inter-observer variability. Nevertheless the proposal of a new revised AUDI2000 color-difference formula requires additional experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper illustrates how to design a visual experiment to measure color differences in gonioapparent materials and how to assess the merits of different advanced color-difference formulas trying to predict the results of such experiment. Successful color-difference formulas are necessary for industrial quality control and artificial color-vision applications. A color- difference formula must be accurate under a wide variety of experimental conditions including the use of challenging materials like, for example, gonioapparent samples. Improving the experimental design in a previous paper [Melgosaet al., Optics Express 22, 3458-3467 (2014)], we have tested 11 advanced color-difference formulas from visual assessments performed by a panel of 11 observers with normal colorvision using a set of 56 nearly achromatic colorpairs of automotive gonioapparent samples. Best predictions of our experimental results were found for the AUDI2000 color-difference formula, followed by color-difference formulas based on the color appearance model CIECAM02. Parameters in the original weighting function for lightness in the AUDI2000 formula were optimized obtaining small improvements. However, a power function from results provided by the AUDI2000 formula considerably improved results, producing values close to the inter-observer variability in our visual experiment. Additional research is required to obtain a modified AUDI2000 color-difference formula significantly better than the current one.