2 resultados para Innovation strategies
em Universidad de Alicante
Resumo:
In Computer Science world several proposals have been developed for the assessment of the quality of the digital objects, based on the capabilities and facilities offered by current technologies and the available resources. Years ago researchers and specialists from both educational and technological areas have been committed to the development of strategies that improve the quality of education. At present, in the field of teaching-learning, another important aspect is the need to improve the manner of gaining knowledge and learning in education, which the use of learning strategies is a major advance in the teaching-learning process in institutions of higher education. This paper presents QEES, a proposal for evaluating the quality of the learning objects employed on learning strategies to support students during their education processes by using information extraction techniques and ontologies.
Resumo:
Irrigated agriculture is usually performed in semi-arid regions despite scarcity of water resources. Therefore, optimal irrigation management by monitoring the soil is essential, and assessing soil hydraulic properties and water flow dynamics is presented as a first measure. For this purpose, the control of volumetric water content, θ, and pressure head, h, is required. This study adopted two types of monitoring strategies in the same experimental plot to control θ and h in the vadose zone: i) non-automatic and more time-consuming; ii) automatic connected to a datalogger. Water flux was modelled with Hydrus-1D using the data collected from both acquisition strategies independently (3820 daily values for the automatic; less than 1000 for the non-automatic). Goodness-of-fit results reported a better adjustment in case of automatic sensors. Both model outputs adequately predicted the general trend of θ and h, but with slight differences in computed annual drainage (711 mm and 774 mm). Soil hydraulic properties were inversely estimated from both data acquisition systems. Major differences were obtained in the saturated volumetric water content, θs, and the n and α van Genuchten model shape parameters. Saturated hydraulic conductivity, Ks, shown lower variability with a coefficient of variation range from 0.13 to 0.24 for the soil layers defined. Soil hydraulic properties were better assessed through automatic data acquisition as data variability was lower and accuracy was higher.