3 resultados para Index of abundance
em Universidad de Alicante
Resumo:
Aquesta nota mostra la tendència poblacional de la garsa (Pica pica) al llarg del kilòmetre 1 (des de la línea de costa, riu amunt) del paisatge protegit de la Desembocadura del riu Millars (Castelló), per al període comprés de 1994-2009 (16 anys). Els resultats se centren en censos realitzats a la zona mitjançant el mètode del transecte lineal duts a terme 3 o 4 vegades al mes. L’espècie se censa per primera vegada l’any 1997 i des l’aleshores mostra una tendència a l’alça sobretot a partir de 2003 i molt especialment en els dos últims (2008-2009). S’ha estabilitzat una abundància mitjana de 8,3 aus/km. Pel que fa a les correlacions amb la meteorologia, en els anys més freds presenta menor abundància que en els càlids. Els hiverns càlids podrien permetre major supervivència i, a més, major disponibilitat de recursos amb els quals assegurar un bon nombre de polls. L’espècie troba en la zona suficients recursos tròfics per sobreviure i un lloc excel·lent on lliurar-se de la pressió cinegètica.
Resumo:
We present an analysis of a pointed 141 ks Chandra high-resolution transmission gratings observation of the Be X-ray emitting star HD110432, a prominent member of the γ Cas analogs. This observation represents the first high-resolution spectrum taken for this source as well as the longest uninterrupted observation of any γ Cas analog. The Chandra light curve shows a high variability but its analysis fails to detect any coherent periodicity up to a frequency of 0.05 Hz. Hardness ratio versus intensity analyses demonstrate that the relative contributions of the [1.5-3] Å, [3-6] Å, and [6-16] Å energy bands to the total flux change rapidly in the short term. The analysis of the Chandra High Energy Transmission Grating (HETG) spectrum shows that, to correctly describe the spectrum, three model components are needed. Two of those components are optically thin thermal plasmas of different temperatures (kT ≈ 8-9 and 0.2-0.3 keV, respectively) described by the models vmekal or bvapec. The Fe abundance in each of these two components appears equal within the errors and is slightly subsolar with Z ≈ 0.75 Z ☉. The bvapec model better describes the Fe L transitions, although it cannot fit well the Na XI Lyα line at 10.02 Å, which appears to be overabundant. Two different models seem to describe well the third component. One possibility is a third hot optically thin thermal plasma at kT = 16-21 keV with an Fe abundance Z ≈ 0.3 Z ☉, definitely smaller than for the other two thermal components. Furthermore, the bvapec model describes well the Fe K shell transitions because it accounts for the turbulence broadening of the Fe XXV and Fe XXVI lines with a v turb ≈ 1200 km s–1. These two lines, contributed mainly by the hot thermal plasma, are significantly wider than the Fe Kα line whose FWHM < 5 mÅ is not resolved by Chandra. Alternatively, the third component can be described by a power law with a photon index of Γ = 1.56. In either case, the Chandra HETG spectrum establishes that each one of these components must be modified by distinct absorption columns. The analysis of a noncontemporaneous 25 ks Suzaku observation shows the presence of a hard tail extending up to at least 33 keV. The Suzaku spectrum is described with the sum of two components: an optically thin thermal plasma at kT ≈ 9 keV and Z ≈ 0.74 Z ☉, and a very hot second plasma with kT ≈ 33 keV or, alternatively, a power law with photon index of Γ = 1.58. In either case, each one of the two components must be affected by different absorption columns. Therefore, the kT = 8-9 keV component is definitely needed while the nature of the harder emission cannot be unambiguously established with the present data sets. The analysis of the Si XIII and S XV He-like triplets present in the Chandra spectrum points to a very dense (ne ~ 1013 cm–3) plasma located either close to the stellar surface (r < 3R *) of the Be star or, alternatively, very close (r ~ 1.5R WD) to the surface of a (hypothetical) white dwarf companion. We argue, however, that the available data support the first scenario.
Resumo:
The Lofoten-Vesterålen marine shelf is one of the most geologically diverse coast and offshore margin areas in Norway. This leads to huge heterogeneity in marine environments, and often high biodiversity. However, little is known yet about the benthic communities in this region. Within the ARCTOS LoVe MarineEco project the epibenthic communities of the Hola trough (Vesterålen) are analysed to give a first description of their spatial distribution. In this trough both a complex hydrodynamic system and varied topographic submarine elements occur. Trawling samples were collected for two different approaches: one in a meso-scale and another in a small-scale. For the broad scale a transect consisting in three stations was developed, while for the fine scale a small area on a sand wave field, consisting in five stations called HolaBox, was sampled. All organisms were intended to be identified to species level and colonial fauna was discarded for the analysis. Different diversity indexes were assessed (Shannon index (H’) and Pielou’s eveness (J’)). Clustering and nMDS analyses identified four statistically significant groups in terms of abundance (ind./100m2). A total amount of 211 different taxa were found within all stations. The more outer part of the transect (close to the shelf edge) presented a huge abundance of organisms and was dominated by the hemi sessile tube-builder polychaetes Nothria conchylega and Eunice dubitata and the sea urchin Gacilechinus acutus, while the more inner parts presented less abundance of individuals. Probably some upwelling produced by the Norwegian Atlantic Current (NWAC) is influencing the shelf edge increasing the primary production and, therefore, enriching the seafloor in this region. The sand wave field presented two different groups with few amount of individuals. Small-scale variability could be produced by the high heterogeneity within the different types of sand waves, while the scarce abundance of animals can be produced by the permanent changing environment that movable sand waves produce. Here more active and mobile fauna was found such as brittle stars and hermit crabs (among others). Finally, a fourth group was found in the most inner station of the transect, laying on a ridge in the central part of the trough. This station, with coarse substrate, was mainly dominated again by brittle stars and sea urchins. We can conclude that this is a really heterogeneous trough in environments and therefore in communities (even in a local scale). More detailed studies that focus in the local environmental drivers have to be carried out to get an integrated understanding of the structure of benthic communities in this system.