3 resultados para Incollaggi, Single-lap joint, Effetto di bordo, CFRP, Analisi numerica, FEM
em Universidad de Alicante
Resumo:
A scanning tunneling microscope can probe the inelastic spin excitations of a single magnetic atom in a surface via spin-flip assisted tunneling in which transport electrons exchange spin and energy with the atomic spin. If the inelastic transport time, defined as the average time elapsed between two inelastic spin flip events, is shorter than the atom spin-relaxation time, the scanning tunnel microscope (STM) current can drive the spin out of equilibrium. Here we model this process using rate equations and a model Hamiltonian that describes successfully spin-flip-assisted tunneling experiments, including a single Mn atom, a Mn dimer, and Fe Phthalocyanine molecules. When the STM current is not spin polarized, the nonequilibrium spin dynamics of the magnetic atom results in nonmonotonic dI/dV curves. In the case of spin-polarized STM current, the spin orientation of the magnetic atom can be controlled parallel or antiparallel to the magnetic moment of the tip. Thus, spin-polarized STM tips can be used both to probe and to control the magnetic moment of a single atom.
Resumo:
I show that recent experiments of inelastic scanning tunneling spectroscopy of single and a few magnetic atoms are modeled with a phenomenological spin-assisted tunneling Hamiltonian so that the inelastic dI/dV line shape is related to the spin spectral weight of the magnetic atom. This accounts for the spin selection rules and dI/dV spectra observed experimentally for single Fe and Mn atoms deposited on Cu2N. In the case of chains of Mn atoms it is found necessary to include both first and second-neighbor exchange interactions as well as single-ion anisotropy.
Resumo:
We study single electron transport across a single Bi dopant in a silicon nanotransistor to assess how the strong hyperfine coupling with the Bi nuclear spin I = 9/2 affects the transport characteristics of the device. In the sequential tunneling regime we find that at, temperatures in the range of 100 mK, dI/dV curves reflect the zero field hyperfine splitting as well as its evolution under an applied magnetic field. Our non-equilibrium quantum simulations show that nuclear spins can be partially polarized parallel or antiparallel to the electronic spin just tuning the applied bias.