12 resultados para Images - Computational methods

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent years have witnessed a surge of interest in computational methods for affect, ranging from opinion mining, to subjectivity detection, to sentiment and emotion analysis. This article presents a brief overview of the latest trends in the field and describes the manner in which the articles contained in the special issue contribute to the advancement of the area. Finally, we comment on the current challenges and envisaged developments of the subjectivity and sentiment analysis fields, as well as their application to other Natural Language Processing tasks and related domains.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using a combination of experimental and computational methods, mainly FTIR and DFT calculations, new insights are provided here in order to better understand the cleavage of the C–C bond taking place during the complete oxidation of ethanol on platinum stepped surfaces. First, new experimental results pointing out that platinum stepped surfaces having (111) terraces promote the C–C bond breaking are presented. Second, it is computationally shown that the special adsorption properties of the atoms in the step are able to promote the C–C scission, provided that no other adsorbed species are present on the step, which is in agreement with the experimental results. In comparison with the (111) terrace, the cleavage of the C–C bond on the step has a significantly lower activation energy, which would provide an explanation for the observed experimental results. Finally, reactivity differences under acidic and alkaline conditions are discussed using the new experimental and theoretical evidence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Numerical modelling methodologies are important by their application to engineering and scientific problems, because there are processes where analytical mathematical expressions cannot be obtained to model them. When the only available information is a set of experimental values for the variables that determine the state of the system, the modelling problem is equivalent to determining the hyper-surface that best fits the data. This paper presents a methodology based on the Galerkin formulation of the finite elements method to obtain representations of relationships that are defined a priori, between a set of variables: y = z(x1, x2,...., xd). These representations are generated from the values of the variables in the experimental data. The approximation, piecewise, is an element of a Sobolev space and has derivatives defined in a general sense into this space. The using of this approach results in the need of inverting a linear system with a structure that allows a fast solver algorithm. The algorithm can be used in a variety of fields, being a multidisciplinary tool. The validity of the methodology is studied considering two real applications: a problem in hydrodynamics and a problem of engineering related to fluids, heat and transport in an energy generation plant. Also a test of the predictive capacity of the methodology is performed using a cross-validation method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Virtual Screening (VS) methods can considerably aid clinical research, predicting how ligands interact with drug targets. However, the accuracy of most VS methods is constrained by limitations in the scoring function that describes biomolecular interactions, and even nowadays these uncertainties are not completely understood. In order to improve accuracy of scoring functions used in most VS methods we propose a hybrid novel approach where neural networks (NNET) and support vector machines (SVM) methods are trained with databases of known active (drugs) and inactive compounds, this information being exploited afterwards to improve VS predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this paper is to present a system to communicate hidden information among different users by means of images. The tasks that the system is able to carry on can be divided in two different groups of utilities, implemented in java. The first group of utilities are related with the possibility to hide information in color images, using a steganographic function based on the least significant bit (LSB) methods. The second group of utilities allows us to communicate with other users with the aim to send or receive images, where some information have been previously embedded. Thus, this is the most significant characteristic of the implementation, we have built an environment where we join the email capabilities to send and receive text and images as attached files, with the main objective of hiding information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider quasi-Newton methods for generalized equations in Banach spaces under metric regularity and give a sufficient condition for q-linear convergence. Then we show that the well-known Broyden update satisfies this sufficient condition in Hilbert spaces. We also establish various modes of q-superlinear convergence of the Broyden update under strong metric subregularity, metric regularity and strong metric regularity. In particular, we show that the Broyden update applied to a generalized equation in Hilbert spaces satisfies the Dennis–Moré condition for q-superlinear convergence. Simple numerical examples illustrate the results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we present a multi-camera surveillance system based on the use of self-organizing neural networks to represent events on video. The system processes several tasks in parallel using GPUs (graphic processor units). It addresses multiple vision tasks at various levels, such as segmentation, representation or characterization, analysis and monitoring of the movement. These features allow the construction of a robust representation of the environment and interpret the behavior of mobile agents in the scene. It is also necessary to integrate the vision module into a global system that operates in a complex environment by receiving images from multiple acquisition devices at video frequency. Offering relevant information to higher level systems, monitoring and making decisions in real time, it must accomplish a set of requirements, such as: time constraints, high availability, robustness, high processing speed and re-configurability. We have built a system able to represent and analyze the motion in video acquired by a multi-camera network and to process multi-source data in parallel on a multi-GPU architecture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we utilise a novel approach to segment out the ventricular system in a series of high resolution T1-weighted MR images. We present a brain ventricles fast reconstruction method. The method is based on the processing of brain sections and establishing a fixed number of landmarks onto those sections to reconstruct the ventricles 3D surface. Automated landmark extraction is accomplished through the use of the self-organising network, the growing neural gas (GNG), which is able to topographically map the low dimensionality of the network to the high dimensionality of the contour manifold without requiring a priori knowledge of the input space structure. Moreover, our GNG landmark method is tolerant to noise and eliminates outliers. Our method accelerates the classical surface reconstruction and filtering processes. The proposed method offers higher accuracy compared to methods with similar efficiency as Voxel Grid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Iterative Closest Point algorithm (ICP) is commonly used in engineering applications to solve the rigid registration problem of partially overlapped point sets which are pre-aligned with a coarse estimate of their relative positions. This iterative algorithm is applied in many areas such as the medicine for volumetric reconstruction of tomography data, in robotics to reconstruct surfaces or scenes using range sensor information, in industrial systems for quality control of manufactured objects or even in biology to study the structure and folding of proteins. One of the algorithm’s main problems is its high computational complexity (quadratic in the number of points with the non-optimized original variant) in a context where high density point sets, acquired by high resolution scanners, are processed. Many variants have been proposed in the literature whose goal is the performance improvement either by reducing the number of points or the required iterations or even enhancing the complexity of the most expensive phase: the closest neighbor search. In spite of decreasing its complexity, some of the variants tend to have a negative impact on the final registration precision or the convergence domain thus limiting the possible application scenarios. The goal of this work is the improvement of the algorithm’s computational cost so that a wider range of computationally demanding problems from among the ones described before can be addressed. For that purpose, an experimental and mathematical convergence analysis and validation of point-to-point distance metrics has been performed taking into account those distances with lower computational cost than the Euclidean one, which is used as the de facto standard for the algorithm’s implementations in the literature. In that analysis, the functioning of the algorithm in diverse topological spaces, characterized by different metrics, has been studied to check the convergence, efficacy and cost of the method in order to determine the one which offers the best results. Given that the distance calculation represents a significant part of the whole set of computations performed by the algorithm, it is expected that any reduction of that operation affects significantly and positively the overall performance of the method. As a result, a performance improvement has been achieved by the application of those reduced cost metrics whose quality in terms of convergence and error has been analyzed and validated experimentally as comparable with respect to the Euclidean distance using a heterogeneous set of objects, scenarios and initial situations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abdominal Aortic Aneurism is a disease related to a weakening in the aortic wall that can cause a break in the aorta and the death. The detection of an unusual dilatation of a section of the aorta is an indicative of this disease. However, it is difficult to diagnose because it is necessary image diagnosis using computed tomography or magnetic resonance. An automatic diagnosis system would allow to analyze abdominal magnetic resonance images and to warn doctors if any anomaly is detected. We focus our research in magnetic resonance images because of the absence of ionizing radiation. Although there are proposals to identify this disease in magnetic resonance images, they need an intervention from clinicians to be precise and some of them are computationally hard. In this paper we develop a novel approach to analyze magnetic resonance abdominal images and detect the lumen and the aortic wall. The method combines different algorithms in two stages to improve the detection and the segmentation so it can be applied to similar problems with other type of images or structures. In a first stage, we use a spatial fuzzy C-means algorithm with morphological image analysis to detect and segment the lumen; and subsequently, in a second stage, we apply a graph cut algorithm to segment the aortic wall. The obtained results in the analyzed images are pretty successful obtaining an average of 79% of overlapping between the automatic segmentation provided by our method and the aortic wall identified by a medical specialist. The main impact of the proposed method is that it works in a completely automatic way with a low computational cost, which is of great significance for any expert and intelligent system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a modified version of the elastic bunch graph matching (EBGM) algorithm for face recognition is introduced. First, faces are detected by using a fuzzy skin detector based on the RGB color space. Then, the fiducial points for the facial graph are extracted automatically by adjusting a grid of points to the result of an edge detector. After that, the position of the nodes, their relation with their neighbors and their Gabor jets are calculated in order to obtain the feature vector defining each face. A self-organizing map (SOM) framework is shown afterwards. Thus, the calculation of the winning neuron and the recognition process are performed by using a similarity function that takes into account both the geometric and texture information of the facial graph. The set of experiments carried out for our SOM-EBGM method shows the accuracy of our proposal when compared with other state-of the-art methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predicting accurate bond length alternations (BLAs) in long conjugated oligomers has been a significant challenge for electronic-structure methods for many decades, made particularly important by the close relationships between BLA and the rich optoelectronic properties of π-delocalized systems. Here, we test the accuracy of recently developed, and increasingly popular, double hybrid (DH) functionals, positioned at the top of Jacobs Ladder of DFT methods of increasing sophistication, computational cost, and accuracy, due to incorporation of MP2 correlation energy. Our test systems comprise oligomeric series of polyacetylene, polymethineimine, and polysilaacetylene up to six units long. MP2 calculations reveal a pronounced shift in BLAs between the 6-31G(d) basis set used in many studies of BLA to date and the larger cc-pVTZ basis set, but only modest shifts between cc-pVTZ and aug-cc-pVQZ results. We hence perform new reference CCSD(T)/cc-pVTZ calculations for all three series of oligomers against which we assess the performance of several families of DH functionals based on BLYP, PBE, and TPSS, along with lower-rung relatives including global- and range-separated hybrids. Our results show that DH functionals systematically improve the accuracy of BLAs relative to single hybrid functionals. xDH-PBE0 (N4 scaling using SOS-MP2) emerges as a DH functional rivaling the BLA accuracy of SCS-MP2 (N5 scaling), which was found to offer the best compromise between computational cost and accuracy the last time the BLA accuracy of DFT- and wave function-based methods was systematically investigated. Interestingly, xDH-PBE0 (XYG3), which differs to other DHs in that its MP2 term uses PBE0 (B3LYP) orbitals that are not self-consistent with the DH functional, is an outlier of trends of decreasing average BLA errors with increasing fractions of MP2 correlation and HF exchange.