7 resultados para Image recognition and processing

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are a large number of image processing applications that work with different performance requirements and available resources. Recent advances in image compression focus on reducing image size and processing time, but offer no real-time solutions for providing time/quality flexibility of the resulting image, such as using them to transmit the image contents of web pages. In this paper we propose a method for encoding still images based on the JPEG standard that allows the compression/decompression time cost and image quality to be adjusted to the needs of each application and to the bandwidth conditions of the network. The real-time control is based on a collection of adjustable parameters relating both to aspects of implementation and to the hardware with which the algorithm is processed. The proposed encoding system is evaluated in terms of compression ratio, processing delay and quality of the compressed image when compared with the standard method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Behaviour analysis of construction safety systems is of fundamental importance to avoid accidental injuries. Traditionally, measurements of dynamic actions in Civil Engineering have been done through accelerometers, but high-speed cameras and image processing techniques can play an important role in this area. Here, we propose using morphological image filtering and Hough transform on high-speed video sequence as tools for dynamic measurements on that field. The presented method is applied to obtain the trajectory and acceleration of a cylindrical ballast falling from a building and trapped by a thread net. Results show that safety recommendations given in construction codes can be potentially dangerous for workers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the problem of the automatic recognition and classification of temporal expressions and events in human language. Efficacy in these tasks is crucial if the broader task of temporal information processing is to be successfully performed. We analyze whether the application of semantic knowledge to these tasks improves the performance of current approaches. We therefore present and evaluate a data-driven approach as part of a system: TIPSem. Our approach uses lexical semantics and semantic roles as additional information to extend classical approaches which are principally based on morphosyntax. The results obtained for English show that semantic knowledge aids in temporal expression and event recognition, achieving an error reduction of 59% and 21%, while in classification the contribution is limited. From the analysis of the results it may be concluded that the application of semantic knowledge leads to more general models and aids in the recognition of temporal entities that are ambiguous at shallower language analysis levels. We also discovered that lexical semantics and semantic roles have complementary advantages, and that it is useful to combine them. Finally, we carried out the same analysis for Spanish. The results obtained show comparable advantages. This supports the hypothesis that applying the proposed semantic knowledge may be useful for different languages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Póster presentado en SPIE Photonics Europe, Brussels, 16-19 April 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comunicación presentada en el XI Workshop of Physical Agents, Valencia, 9-10 septiembre 2010.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Feature vectors can be anything from simple surface normals to more complex feature descriptors. Feature extraction is important to solve various computer vision problems: e.g. registration, object recognition and scene understanding. Most of these techniques cannot be computed online due to their complexity and the context where they are applied. Therefore, computing these features in real-time for many points in the scene is impossible. In this work, a hardware-based implementation of 3D feature extraction and 3D object recognition is proposed to accelerate these methods and therefore the entire pipeline of RGBD based computer vision systems where such features are typically used. The use of a GPU as a general purpose processor can achieve considerable speed-ups compared with a CPU implementation. In this work, advantageous results are obtained using the GPU to accelerate the computation of a 3D descriptor based on the calculation of 3D semi-local surface patches of partial views. This allows descriptor computation at several points of a scene in real-time. Benefits of the accelerated descriptor have been demonstrated in object recognition tasks. Source code will be made publicly available as contribution to the Open Source Point Cloud Library.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, new computers generation provides a high performance that enables to build computationally expensive computer vision applications applied to mobile robotics. Building a map of the environment is a common task of a robot and is an essential part to allow the robots to move through these environments. Traditionally, mobile robots used a combination of several sensors from different technologies. Lasers, sonars and contact sensors have been typically used in any mobile robotic architecture, however color cameras are an important sensor due to we want the robots to use the same information that humans to sense and move through the different environments. Color cameras are cheap and flexible but a lot of work need to be done to give robots enough visual understanding of the scenes. Computer vision algorithms are computational complex problems but nowadays robots have access to different and powerful architectures that can be used for mobile robotics purposes. The advent of low-cost RGB-D sensors like Microsoft Kinect which provide 3D colored point clouds at high frame rates made the computer vision even more relevant in the mobile robotics field. The combination of visual and 3D data allows the systems to use both computer vision and 3D processing and therefore to be aware of more details of the surrounding environment. The research described in this thesis was motivated by the need of scene mapping. Being aware of the surrounding environment is a key feature in many mobile robotics applications from simple robotic navigation to complex surveillance applications. In addition, the acquisition of a 3D model of the scenes is useful in many areas as video games scene modeling where well-known places are reconstructed and added to game systems or advertising where once you get the 3D model of one room the system can add furniture pieces using augmented reality techniques. In this thesis we perform an experimental study of the state-of-the-art registration methods to find which one fits better to our scene mapping purposes. Different methods are tested and analyzed on different scene distributions of visual and geometry appearance. In addition, this thesis proposes two methods for 3d data compression and representation of 3D maps. Our 3D representation proposal is based on the use of Growing Neural Gas (GNG) method. This Self-Organizing Maps (SOMs) has been successfully used for clustering, pattern recognition and topology representation of various kind of data. Until now, Self-Organizing Maps have been primarily computed offline and their application in 3D data has mainly focused on free noise models without considering time constraints. Self-organising neural models have the ability to provide a good representation of the input space. In particular, the Growing Neural Gas (GNG) is a suitable model because of its flexibility, rapid adaptation and excellent quality of representation. However, this type of learning is time consuming, specially for high-dimensional input data. Since real applications often work under time constraints, it is necessary to adapt the learning process in order to complete it in a predefined time. This thesis proposes a hardware implementation leveraging the computing power of modern GPUs which takes advantage of a new paradigm coined as General-Purpose Computing on Graphics Processing Units (GPGPU). Our proposed geometrical 3D compression method seeks to reduce the 3D information using plane detection as basic structure to compress the data. This is due to our target environments are man-made and therefore there are a lot of points that belong to a plane surface. Our proposed method is able to get good compression results in those man-made scenarios. The detected and compressed planes can be also used in other applications as surface reconstruction or plane-based registration algorithms. Finally, we have also demonstrated the goodness of the GPU technologies getting a high performance implementation of a CAD/CAM common technique called Virtual Digitizing.