3 resultados para IS capabilities

em Universidad de Alicante


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a multilayered architecture that enhances the capabilities of current QA systems and allows different types of complex questions or queries to be processed. The answers to these questions need to be gathered from factual information scattered throughout different documents. Specifically, we designed a specialized layer to process the different types of temporal questions. Complex temporal questions are first decomposed into simple questions, according to the temporal relations expressed in the original question. In the same way, the answers to the resulting simple questions are recomposed, fulfilling the temporal restrictions of the original complex question. A novel aspect of this approach resides in the decomposition which uses a minimal quantity of resources, with the final aim of obtaining a portable platform that is easily extensible to other languages. In this paper we also present a methodology for evaluation of the decomposition of the questions as well as the ability of the implemented temporal layer to perform at a multilingual level. The temporal layer was first performed for English, then evaluated and compared with: a) a general purpose QA system (F-measure 65.47% for QA plus English temporal layer vs. 38.01% for the general QA system), and b) a well-known QA system. Much better results were obtained for temporal questions with the multilayered system. This system was therefore extended to Spanish and very good results were again obtained in the evaluation (F-measure 40.36% for QA plus Spanish temporal layer vs. 22.94% for the general QA system).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work explores the multi-element capabilities of inductively coupled plasma - mass spectrometry with collision/reaction cell technology (CCT-ICP-MS) for the simultaneous determination of both spectrally interfered and non-interfered nuclides in wine samples using a single set of experimental conditions. The influence of the cell gas type (i.e. He, He+H2 and He+NH3), cell gas flow rate and sample pre-treatment (i.e. water dilution or acid digestion) on the background-equivalent concentration (BEC) of several nuclides covering the mass range from 7 to 238 u has been studied. Results obtained in this work show that, operating the collision/reaction cell with a compromise cell gas flow rate (i.e. 4 mL min−1) improves BEC values for interfered nuclides without a significant effect on the BECs for non-interfered nuclides, with the exception of the light elements Li and Be. Among the different cell gas mixtures tested, the use of He or He+H2 is preferred over He+NH3 because NH3 generates new spectral interferences. No significant influence of the sample pre-treatment methodology (i.e. dilution or digestion) on the multi-element capabilities of CCT-ICP-MS in the context of simultaneous analysis of interfered and non-interfered nuclides was observed. Nonetheless, sample dilution should be kept at minimum to ensure that light nuclides (e.g. Li and Be) could be quantified in wine. Finally, a direct 5-fold aqueous dilution is recommended for the simultaneous trace and ultra-trace determination of spectrally interfered and non-interfered elements in wine by means of CCT-ICP-MS. The use of the CCT is mandatory for interference-free ultra-trace determination of Ti and Cr. Only Be could not be determined when using the CCT due to a deteriorated limit of detection when compared to conventional ICP-MS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With global warming becoming one of the main problems our society is facing nowadays, there is an urgent demand to develop materials suitable for CO2 storage as well as for gas separation. Within this context, hierarchical porous structures are of great interest for in-flow applications because of the desirable combination of an extensive internal reactive surface along narrow nanopores with facile molecular transport through broad “highways” leading to and from these pores. Deep eutectic solvents (DESs) have been recently used in the synthesis of carbon monoliths exhibiting a bicontinuous porous structure composed of continuous macroporous channels and a continuous carbon network that contains a certain microporosity and provides considerable surface area. In this work, we have prepared two DESs for the preparation of two hierarchical carbon monoliths with different compositions (e.g., either nitrogen-doped or not) and structure. It is worth noting that DESs played a capital role in the synthesis of hierarchical carbon monoliths not only promoting the spinodal decomposition that governs the formation of the bicontinuous porous structure but also providing the precursors required to tailor the composition and the molecular sieve structure of the resulting carbons. We have studied the performance of these two carbons for CO2, N2, and CH4 adsorption in both monolithic and powdered form. We have also studied the selective adsorption of CO2 versus CH4 in equilibrium and dynamic conditions. We found that these materials combined a high CO2-sorption capacity besides an excellent CO2/N2 and CO2/CH4 selectivity and, interestingly, this performance was preserved when processed in both monolithic and powdered form.