5 resultados para INTERSTELLAR TURBULENCE

em Universidad de Alicante


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Only a few binary systems with compact objects display TeV emission. The physical properties of the companion stars represent basic input for understanding the physical mechanisms behind the particle acceleration, emission, and absorption processes in these so-called gamma-ray binaries. Here we present high-resolution and high signal-to-noise optical spectra of LS 2883, the Be star forming a gamma-ray binary with the young non-accreting pulsar PSR B1259-63, showing it to rotate faster and be significantly earlier and more luminous than previously thought. Analysis of the interstellar lines suggests that the system is located at the same distance as (and thus is likely a member of) Cen OB1. Taking the distance to the association, d = 2.3 kpc, and a color excess of E(B – V) = 0.85 for LS 2883 results in MV ≈ –4.4. Because of fast rotation, LS 2883 is oblate (R eq sime 9.7 R ☉ and R pole sime 8.1 R ☉) and presents a temperature gradient (T eq≈ 27,500 K, log g eq = 3.7; T pole≈ 34,000 K, log g pole = 4.1). If the star did not rotate, it would have parameters corresponding to a late O-type star. We estimate its luminosity at log(L */L ☉) sime 4.79 and its mass at M * ≈ 30 M ☉. The mass function then implies an inclination of the binary system i orb ≈ 23°, slightly smaller than previous estimates. We discuss the implications of these new astrophysical parameters of LS 2883 for the production of high-energy and very high-energy gamma rays in the PSR B1259-63/LS 2883 gamma-ray binary system. In particular, the stellar properties are very important for prediction of the line-like bulk Comptonization component from the unshocked ultrarelativistic pulsar wind.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an analysis of a series of four consecutive Chandra high-resolution transmission gratings observations, amounting to a total of 150 ks, of the Be X-ray source HD 119682 (=1WGA J1346.5–6255), a member of the new class of γ Cas analogs. The Chandra light curve shows significant brightness variations on timescales of hours. However, the spectral distribution appears rather stable within each observation and during the whole campaign. A detailed analysis is not able to detect any coherent pulsation up to a frequency of 0.05 Hz. The Chandra High Energy Transmission Gratings spectrum seems to be devoid of any strong emission line, including Fe Kα fluorescence. The continuum is well described with the addition of two collisionally ionized plasmas of temperatures kT ≈ 15 keV and 0.2 keV, respectively, by the apec model. Models using photoionized plasma components (mekal) or non-thermal components (powerlaw) give poorer fits, providing support for the pure thermal scenario. These two components are absorbed by a single column with N H = (0.20+0.15 –0.03) × 1022 cm–2 compatible with the interstellar value. We conclude that HD 119682 can be regarded as a pole-on γ Cas analog.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an analysis of a pointed 141 ks Chandra high-resolution transmission gratings observation of the Be X-ray emitting star HD110432, a prominent member of the γ Cas analogs. This observation represents the first high-resolution spectrum taken for this source as well as the longest uninterrupted observation of any γ Cas analog. The Chandra light curve shows a high variability but its analysis fails to detect any coherent periodicity up to a frequency of 0.05 Hz. Hardness ratio versus intensity analyses demonstrate that the relative contributions of the [1.5-3] Å, [3-6] Å, and [6-16] Å energy bands to the total flux change rapidly in the short term. The analysis of the Chandra High Energy Transmission Grating (HETG) spectrum shows that, to correctly describe the spectrum, three model components are needed. Two of those components are optically thin thermal plasmas of different temperatures (kT ≈ 8-9 and 0.2-0.3 keV, respectively) described by the models vmekal or bvapec. The Fe abundance in each of these two components appears equal within the errors and is slightly subsolar with Z ≈ 0.75 Z ☉. The bvapec model better describes the Fe L transitions, although it cannot fit well the Na XI Lyα line at 10.02 Å, which appears to be overabundant. Two different models seem to describe well the third component. One possibility is a third hot optically thin thermal plasma at kT = 16-21 keV with an Fe abundance Z ≈ 0.3 Z ☉, definitely smaller than for the other two thermal components. Furthermore, the bvapec model describes well the Fe K shell transitions because it accounts for the turbulence broadening of the Fe XXV and Fe XXVI lines with a v turb ≈ 1200 km s–1. These two lines, contributed mainly by the hot thermal plasma, are significantly wider than the Fe Kα line whose FWHM < 5 mÅ is not resolved by Chandra. Alternatively, the third component can be described by a power law with a photon index of Γ = 1.56. In either case, the Chandra HETG spectrum establishes that each one of these components must be modified by distinct absorption columns. The analysis of a noncontemporaneous 25 ks Suzaku observation shows the presence of a hard tail extending up to at least 33 keV. The Suzaku spectrum is described with the sum of two components: an optically thin thermal plasma at kT ≈ 9 keV and Z ≈ 0.74 Z ☉, and a very hot second plasma with kT ≈ 33 keV or, alternatively, a power law with photon index of Γ = 1.58. In either case, each one of the two components must be affected by different absorption columns. Therefore, the kT = 8-9 keV component is definitely needed while the nature of the harder emission cannot be unambiguously established with the present data sets. The analysis of the Si XIII and S XV He-like triplets present in the Chandra spectrum points to a very dense (ne ~ 1013 cm–3) plasma located either close to the stellar surface (r < 3R *) of the Be star or, alternatively, very close (r ~ 1.5R WD) to the surface of a (hypothetical) white dwarf companion. We argue, however, that the available data support the first scenario.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The discovery of very slow pulsations (Pspin =5560 s) has solved the long-standing question of the nature of the compact object in the high-mass X-ray binary 4U 2206+54 but has posed new ones. According to spin evolutionary models in close binary systems, such slow pulsations require a neutron star magnetic field strength larger than the quantum critical value of 4.4 × 1013 G, suggesting the presence of a magnetar. We present the first XMM–Newton observations of 4U 2206+54 and investigate its spin evolution. We find that the observed spin-down rate agrees with the magnetar scenario. We analyse Integral Spacecraft Gamma-Ray Imager (ISGRI)/INTErnational Gamma-RAy Laboratory (INTEGRAL) observations of 4U 2206+54 to search for the previously suggested cyclotron resonance scattering feature at ∼30 keV. We do not find a clear indication of the presence of the line, although certain spectra display shallow dips, not always at 30 keV. The association of these dips with a cyclotron line is very dubious because of its apparent transient nature. We also investigate the energy spectrum of 4U 2206+54 in the energy range 0.3–10 keV with unprecedented detail and report for the first time the detection of very weak 6.5 keV fluorescence iron lines. The photoelectric absorption is consistent with the interstellar value, indicating very small amount of local matter, which would explain the weakness of the florescence lines. The lack of matter locally to the source may be the consequence of the relatively large orbital separation of the two components of the binary. The wind would be too tenuous in the vicinity of the neutron star.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. The current generation of X-ray satellites has discovered many new X-ray sources that are difficult to classify within the well-described subclasses. The hard X-ray source IGR J11215−5952 is a peculiar transient, displaying very short X-ray outbursts every 165 days. Aims. To characterise the source, we obtained high-resolution spectra of the optical counterpart, HD 306414, at different epochs, spanning a total of three months, before and around the 2007 February outburst with the combined aims of deriving its astrophysical parameters and searching for orbital modulation. Methods. We fit model atmospheres generated with the fastwind code to the spectrum, and used the interstellar lines in the spectrum to estimate its distance. We also cross-correlated each individual spectrum to the best-fit model to derive radial velocities. Results. From its spectral features, we classify HD 306414 as B0.5 Ia. From the model fit, we find Teff ≈ 24 700 K and log g ≈ 2.7, in good agreement with the morphological classification. Using the interstellar lines in its spectrum, we estimate a distance to HD 306414 d ≳ 7 kpc. Assuming this distance, we derive R∗ ≈ 40 R⊙ and Mspect ≈ 30 M⊙ (consistent, within errors, with Mevol ≈ 38 M⊙, and in good agreement with calibrations for the spectral type). Analysis of the radial velocity curve reveals that radial velocity changes are not dominated by the orbital motion, and provide an upper limit on the semi-amplitude for the optical component Kopt ≲ 11 ± 6 km   s-1. Large variations in the depth and shape of photospheric lines suggest the presence of strong pulsations, which may be the main cause of the radial velocity changes. Very significant variations, uncorrelated with those of the photospheric lines are seen in the shape and position of the Hα emission feature around the time of the X-ray outburst, but large excursions are also observed at other times. Conclusions. HD 306414 is a normal B0.5 Ia supergiant. Its radial velocity curve is dominated by an effect that is different from binary motion, and is most likely stellar pulsations. The data available suggest that the X-ray outbursts are caused by the close passage of the neutron star in a very eccentric orbit, perhaps leading to localised mass outflow.