2 resultados para INFRARED ACTION SPECTROSCOPY

em Universidad de Alicante


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The transitions and reactions involved in the thermal treatment of several commercial azodicarbonamides (ADC) in an inert atmosphere have been studied by dynamic thermogravimetry analysis (TGA), mass spectrometry and Fourier transform infrared (FTIR) spectroscopy. A pseudo-mechanistic model, involving several competitive and non-competitive reactions, has been suggested and applied to the correlation of the weight loss data. The model applied is capable of accurately representing the different processes involved, and can be of great interest in the understanding and quantification of such phenomena, including the simulation of the instantaneous amount of gases evolved in a foaming process. In addition, a brief discussion on the methodology related to the mathematical modeling of TGA data is presented, taking into account the complex thermal behaviour of the ADC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel polymer/TiC nanocomposites “PPA/TiC, poly(PA-co-ANI)/TiC and PANI/TiC” was successfully synthesized by chemical oxidation polymerization at room temperature using p-anisidine and/or aniline monomers and titanium carbide (TiC) in the presence of hydrochloric acid as a dopant with ammonium persulfate as oxidant. These nanocomposites obtained were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and thermogravimetric analysis (TGA). XRD indicated the presence of interactions between polymers and TiC nanoparticle and the TGA revealed that the TiC nanoparticles improve the thermal stability of the polymers. The electrical conductivity of nanocomposites is in the range of 0.079–0.91 S cm−1. The electrochemical behavior of the polymers extracted from the nanocomposites has been analyzed by cyclic voltammetry. Good electrochemical response has been observed for polymer films; the observed redox processes indicate that the polymerisation on TiC nanoparticles produces electroactive polymers. These nanocomposite microspheres can potentially used in commercial applications as fillers for antistatic and anticorrosion coatings.