3 resultados para INDUCED PLURIPOTENT STEM CELLS
em Universidad de Alicante
Resumo:
Retinitis pigmentosa (RP) represents a genetically heterogeneous group of retinal dystrophies affecting mainly the rod photoreceptors and in some instances also the retinal pigment epithelium (RPE) cells of the retina. Clinical symptoms and disease progression leading to moderate to severe loss of vision are well established and despite significant progress in the identification of causative genes, the disease pathology remains unclear. Lack of this understanding has so far hindered development of effective therapies. Here we report successful generation of human induced pluripotent stem cells (iPSC) from skin fibroblasts of a patient harboring a novel Ser331Cysfs*5 mutation in the MERTK gene. The patient was diagnosed with an early onset and severe form of autosomal recessive RP (arRP). Upon differentiation of these iPSC towards RPE, patient-specific RPE cells exhibited defective phagocytosis, a characteristic phenotype of MERTK deficiency observed in human patients and animal models. Thus we have created a faithful cellular model of arRP incorporating the human genetic background which will allow us to investigate in detail the disease mechanism, explore screening of a variety of therapeutic compounds/reagents and design either combined cell and gene- based therapies or independent approaches.
Resumo:
Human adipose mesenchymal stem cells are a heterogeneous population, where cell cultures derived from single cell-expanded clones present varying degrees of differential plasticity. This work focuses on the immunomodulatory/anti-inflammatory properties of these cells. To this end, 5 single cell clones were isolated (generally called 1.X and 3.X) from 2 volunteers. Regarding the expression level of the lineage-characteristic surface antigens, clones 1.10 and 1.22 expressed the lowest amounts, while clones 3.10 and 3.5 expressed more CD105 than the rest and clone 1.7 expressed higher amounts of CD73 and CD44. Regarding cytokine secretion, all clones were capable of spontaneously releasing high levels of IL-6 and low to moderate levels of IL-8. These differences can be explained in part by the distinct methylation profile exhibited by the clones. Furthermore and after lipopolysaccharide stimulation, clone 3.X produced the highest amounts of pro-inflammatory cytokines such as IL-1β, while clones 1.10 and 1.22 highly expressed IL-4 and IL-5. In co-culture experiments, clones 1.X are altogether more potent inhibitors than clones 3.X for proliferation of total, CD3+T, CD4+T and CD8+T lymphocytes and NK cells. The results of this work indicates that adipose stem cell population is heterogeneous in cytokine production profile, and that isolation, characterization and selection of the appropriate cell clone is a more exact method for the possible treatment of different patients or pathologies.
Resumo:
Purpose. Transplantation of human central nervous system stem cells (HuCNS-SC) into the subretinal space of Royal College of Surgeons (RCS) rats preserves photoreceptors and visual function. To explore possible mechanism(s) of action underlying this neuroprotective effect, we performed a detailed morphologic and ultrastructure analysis of HuCNS-SC transplanted retinas. Methods. The HuCNS-SC were transplanted into the subretinal space of RCS rats. Histologic examination of the transplanted retinas was performed by light and electron microscopy. Areas of the retina adjacent to HuCNS-SC graft (treated regions) were analyzed and compared to control sections obtained from the same retina, but distant from the transplant site (untreated regions). Results. The HuCNS-SC were detected as a layer of STEM 121 immunopositive cells in the subretinal space. In treated regions, preserved photoreceptor nuclei, as well as inner and outer segments were identified readily. In contrast, classic signs of degeneration were observed in the untreated regions. Interestingly, detailed ultrastructure analysis revealed a striking preservation of the photoreceptor–bipolar–horizontal cell synaptic contacts in the outer plexiform layer (OPL) of treated areas, in stark contrast with untreated areas. Finally, the presence of phagosomes and vesicles exhibiting the lamellar structure of outer segments also was detected within the cytosol of HuCNS-SC, indicating that these cells have phagocytic capacity in vivo. Conclusions. This study reveals the novel finding that preservation of specialized synaptic contacts between photoreceptors and second order neurons, as well as phagocytosis of photoreceptor outer segments, are potential mechanism(s) of HuCNS-SC transplantation, mediating functional rescue in retinal degeneration.