3 resultados para IMUNE SYSTEM DISEASES
em Universidad de Alicante
Resumo:
The ubiquitin–proteasome system (UPS) is the main intracellular pathway for modulated protein turnover, playing an important role in the maintenance of cellular homeostasis. It also exerts a protein quality control through degradation of oxidized, mutant, denatured, or misfolded proteins and is involved in many biological processes where protein level regulation is necessary. This system allows the cell to modulate its protein expression pattern in response to changing physiological conditions and provides a critical protective role in health and disease. Impairments of UPS function in the central nervous system (CNS) underlie an increasing number of genetic and idiopathic diseases, many of which affect the retina. Current knowledge on the UPS composition and function in this tissue, however, is scarce and dispersed. This review focuses on UPS elements reported in the retina, including ubiquitinating and deubiquitinating enzymes (DUBs), and alternative proteasome assemblies. Known and inferred roles of protein ubiquitination, and of the related, SUMO conjugation (SUMOylation) process, in normal retinal development and adult homeostasis are addressed, including modulation of the visual cycle and response to retinal stress and injury. Additionally, the relationship between UPS dysfunction and human neurodegenerative disorders affecting the retina, including Alzheimer's, Parkinson's, and Huntington's diseases, are dealt with, together with numerous instances of retina-specific illnesses with UPS involvement, such as retinitis pigmentosa, macular degenerations, glaucoma, diabetic retinopathy (DR), and aging-related impairments. This information, though still basic and limited, constitutes a suitable framework to be expanded in incoming years and should prove orientative toward future therapy design targeting sight-affecting diseases with a UPS underlying basis.
Resumo:
Objective: To know the impact of the Dynesys system on the functional outcomes in patients with spinal degenerative diseases. Summary of background data: Dynesys system has been proposed as an alternative to vertebral fusion for several spinal degenerative diseases. The fact that it has been used in people with different diagnosis criteria using different tools to measure clinical outcomes makes very difficult unifying the results available nowadays. Methods: The data base of Medlars Online International Literature (MEDLINE) via PubMed©, EMBASE©, and the Cochrane Library Plus were reviewed in search of all the studies published until November 2012 in which an operation with Dynesys in patients with spinal degenerative diseases and an evaluation of the results by an analysis of functional outcomes had taken place. No limits were used to article type, date of publication or language. Results: A total of 134 articles were found, 26 of which fulfilled the inclusion criteria after being assessed by two reviewers. All of them were case series, except for a multicenter randomized clinical trial (RCT) and a prospective case-control study. The selected articles made a total of 1507 cases. The most frequent diagnosis were lumbar spinal canal stenosis (LSCS), degenerative disc disease (DDD), degenerative spondylolisthesis (DS) and lumbar degenerative scoliosis (LDS). In cases of lumbar spinal canal stenosis Dynesys was associated to surgical decompression. Several tools to measure the functional disability and general health status were found. Oswestry Disability Index (ODI), the ODI Korean version (K-Odi), Prolo, Sf-36, Sf-12, Roland-Morris disability questionnaire (RMDQ), and the pain Visual Analogue Scale (VAS) were the most used. They showed positive results in all cases series reviewed. In most studies the ODI decreased about 25% (e.g. from a score of 85% to 60%). Better results when dynamic fusion was combined with nerve root decompression were found. Functional outcomes and leg pain scores with Dynesys were statistically non-inferior to posterolateral spinal fusion using autogenous bone. When Dynesys and decompression was compared with posterior interbody lumbar fixation (PLIF) and decompression, differences in ODI and VAS were not statistically significant. Conclusions: In patients with spinal degenerative diseases due to degenerative disc disorders, spinal canal stenosis and degenerative spondylolisthesis, surgery with Dynesys and decompression improves functional outcomes, decreases disability, and reduces back and leg pain. More studies are needed to conclude that dynamic stabilization is better than posterolateral and posterior interbody lumbar fusion. Studies comparing Dynesys with decompression against decompression alone should be done in order to isolate the effect of the dynamic stabilization.
Resumo:
Today, faced with the constant rise of the Smart cities around the world, there is an exponential increase of the use and deployment of information technologies in the cities. The intensive use of Information Technology (IT) in these ecosystems facilitates and improves the quality of life of citizens, but in these digital communities coexist individuals whose health is affected developing or increasing diseases such as electromagnetic hypersensitivity. In this paper we present a monitoring, detection and prevention system to help this group, through which it is reported the rates of electromagnetic radiation in certain areas, based on the information that the own Smart City gives us. This work provides a perfect platform for the generation of predictive models for detection of future states of risk for humans.