2 resultados para Hydrothermal conditions
em Universidad de Alicante
Resumo:
Although hydrothermal carbonization of biomass components is known to be mainly governed by reaction temperature, consistent reports on the effect and statistical significance of process conditions on hydrochar properties are still lacking. The objective of this research was to determine the importance and significance of reaction temperature, retention time and solid load on the properties of hydrochar produced from an industrial lignocellulosic sludge residue. According to the results, reaction temperature and retention time had a statistically significant effect on hydrochar ash content, solid yield, carbon content, O/C-ratio, energy densification and energy yield as reactor solid load was statistically insignificant for all acquired models within the design range. Although statistically significant, the effect of retention time was 3–7 times lower than that of reaction temperature. Predicted dry ash-free solid yields of attained hydrochar decreased to approximately 40% due to the dissolution of biomass components at higher reaction temperatures, as respective oxygen contents were comparable to subbituminous coal. Significant increases in the carbon contents of hydrochar led to predicted energy densification ratios of 1–1.5 with respective energy yields of 60–100%. Estimated theoretical energy requirements of carbonization were dependent on the literature method used and mainly controlled by reaction temperature and reactor solid load. The attained results enable future prediction of hydrochar properties from this feedstock and help to understand the effect of process conditions on hydrothermal treatment of lignocellulosic biomass.
Resumo:
Simulated cold-start tests have been carried out to evaluate the performance of H-ZSM-5 and H-BETA zeolites as hydrocarbon traps under simulated gasoline car exhaust gases, paying special attention to the effect of water on their behaviour. It is concluded that the hydrothermal treatment of the zeolites in the acidic form contributes to the better performance of these materials as hydrocarbon traps since the stabilization of the zeolites takes place. Moreover, the decrease of the surface acidity of the zeolites results in an increase of the Si/Al ratio, which contributes to the decrease of the water affinity for adsorption sites. Thus, the competition with hydrocarbon molecules in the exhaust for the adsorption sites is reduced which increases their trap efficiency. The stabilized H-ZSM-5 is the zeolite that showed the best performance with a propene offset temperature of 240 °C, which should be high enough for the three-way catalyst to carry out its role as catalytic converter.