4 resultados para Hydrothermal Synthesis, Electrode Materials, Li-Ion Battery

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acid pretreatment of lignocellulosic biomass, required for bioethanol production, generates large amounts of by-products, such as lignin and hydrolyzed hemicellulose fractions, which have found so far very limited applications. In this work, we demonstrate how the recovered hemicellulose hydrolysis products can be effectively utilized as a precursor for the synthesis of functional carbon materials through hydrothermal carbonization (HTC). The morphology and chemical structure of the synthesized HTC carbons are thoroughly characterized to highlight their similarities with glucose-derived HTC carbons. Furthermore, two routes for introducing porosity within the HTC carbon structure are presented: i) silica nanoparticle hard-templating, which is shown to be a viable method for the synthesis of carbonaceous hollow spheres; and ii) KOH chemical activation. The synthesized activated carbons (ACs) show an extremely high porosity (pore volume≈1.0 cm3 g−1) mostly composed of micropores (90 % of total pore volume). Because of their favorable textural properties, the ACs are further tested as electrodes for supercapacitors, yielding very promising results (300 F g−1 at 250 mA g−1) and confirming the high suitability of KOH-activated HTC carbons derived from spruce and corncob hydrolysis products as materials for electric double layer supercapacitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 3D mesoporous TiO2 material with well-developed mesostructure is prepared in the form of a binder-free thin (100 nm) film and studied as potential candidate for the negative electrode in lithium microbatteries. By appropriate thermal treatments, the selected crystal structure (anatase, rutile, or amorphous), and micro-/mesostructure of the materials was obtained. The effects of voltage window and prelithiation treatment improved first cycle reversibility up to 86% and capacity retention of 90% over 100 cycles. After a prolonged intercalation of lithium ions in ordered mesoporous TiO2 appeared small particles assigned to Li2Ti2O4 with cubic structure as observed from ex-situ TEM micrographs. This study highlights the flexibility of the potential window to which the electrode can operate. Maximum capacity values over 100 cycles of 470 μA h cm−2 μm−1 and 177 μA h cm−2 μm−1 are obtained for voltage ranges of 0.1–2.6 V and 1.0–2.6 V, respectively. The observed values are between 6 and 2 times higher than those obtained for films with 600 nm (80 μA h cm−2 μm−1) and 900 nm (92 μA h cm−2 μm−1) lengths. This indicates that 100 nm thin TiO2 films with high accessibility show finite-length type diffusion which is interesting for this particular application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal-complex ionosilicas with cationic complexes into the mesoporous silica framework were prepared using anionic surfactants. The electrostatic interaction between the anionic surfactant and the cationic metal complexes incorporated in the silica framework allows for the fine tuning of the mesoporous structure. The gentle procedure of synthesis developed and mild ion-exchange extraction of the surfactant, allowed a cleaner route for the immobilization of homogeneous cationic catalysts in mesoporous silica, while protecting the structural and chemical integrity of the metal complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Significant effort is being devoted to the study of photoactive electrode materials for artificial photosynthesis devices. In this context, photocathodes promoting water reduction, based on earth-abundant elements and possessing stability under illumination, should be developed. Here, the photoelectrochemical behavior of CuCrO2 sol–gel thin film electrodes prepared on conducting glass is presented. The material, whose direct band gap is 3.15 eV, apparently presents a remarkable stability in both alkaline and acidic media. In 0.1 M HClO4 the material is significantly photoactive, with IPCE values at 350 nm and 0.36 V vs. RHE of over 6% for proton reduction and 23% for oxygen reduction. This response was obtained in the absence of charge extraction layers or co-catalysts, suggesting substantial room for optimization. The photocurrent onset potential is equal to 1.06 V vs. RHE in both alkaline and acidic media, which guarantees the combination of the material with different photoanodes such as Fe2O3 or WO3, potentially yielding bias-free water splitting devices.