3 resultados para Hydrogen permeation current
em Universidad de Alicante
Resumo:
A hydrogen economy is needed, in order to resolve current environmental and energy-related problems. For the introduction of hydrogen as an important energy vector, sophisticated materials are required. This paper provides a brief overview of the subject, with a focus on hydrogen storage technologies for mobile applications. The unique properties of hydrogen are addressed, from which its advantages and challenges can be derived. Different hydrogen storage technologies are described and evaluated, including compression, liquefaction, and metal hydrides, as well as porous materials. This latter class of materials is outlined in more detail, explaining the physisorption interaction which leads to the adsorption of hydrogen molecules and discussing the material characteristics which are required for hydrogen storage application. Finally, a short survey of different porous materials is given which are currently investigated for hydrogen storage, including zeolites, metal organic frameworks (MOFs), covalent organic frameworks (COFs), porous polymers, aerogels, boron nitride materials, and activated carbon materials.
Resumo:
Hydrogen peroxide is a substrate or side-product in many enzyme-catalyzed reactions. For example, it is a side-product of oxidases, resulting from the re-oxidation of FAD with molecular oxygen, and it is a substrate for peroxidases and other enzymes. However, hydrogen peroxide is able to chemically modify the peptide core of the enzymes it interacts with, and also to produce the oxidation of some cofactors and prostetic groups (e.g., the hemo group). Thus, the development of strategies that may permit to increase the stability of enzymes in the presence of this deleterious reagent is an interesting target. This enhancement in enzyme stability has been attempted following almost all available strategies: site-directed mutagenesis (eliminating the most reactive moieties), medium engineering (using stabilizers), immobilization and chemical modification (trying to generate hydrophobic environments surrounding the enzyme, to confer higher rigidity to the protein or to generate oxidation-resistant groups), or the use of systems capable of decomposing hydrogen peroxide under very mild conditions. If hydrogen peroxide is just a side-product, its immediate removal has been reported to be the best solution. In some cases, when hydrogen peroxide is the substrate and its decomposition is not a sensible solution, researchers coupled one enzyme generating hydrogen peroxide “in situ” to the target enzyme resulting in a continuous supply of this reagent at low concentrations thus preventing enzyme inactivation. This review will focus on the general role of hydrogen peroxide in biocatalysis, the main mechanisms of enzyme inactivation produced by this reactive and the different strategies used to prevent enzyme inactivation caused by this “dangerous liaison”.
Resumo:
The direct alkylation of indoles using KOH and alcohols, as initial source of the electrophile, under solvent-free conditions is a safe and environmentally benign strategy for selective modification of these structures at the C3-position, without using hazardous and difficult to handle bromide or iodide derivatives or toxic and expensive transition metal catalysts. The protocol shows a broad scope, including halogenated indoles and secondary alcohols.