3 resultados para Hospital Bed Capacity
em Universidad de Alicante
Resumo:
In this work, batch and dynamic adsorption tests are coupled for an accurate evaluation of CO2 adsorption performance for three different activated carbons obtained from olives stones by chemical activation followed by physical activation with CO2 at varying times, i.e. 20, 40 and 60 h. Kinetic and thermodynamic CO2 adsorption tests from simulated flue-gas at different temperature and CO2 pressure are carried out both in batch (a manometric equipment operating with pure CO2) and dynamic (a lab-scale fixed-bed column operating with CO2/N2 mixture) conditions. The textural characterization of the activated carbon samples shows a direct dependence of both micropore and ultramicropore volume on the activation time, hence AC60 has the higher contribution. The adsorption tests conducted at 273 and 293 K showed that, when CO2 pressure is lower than 0.3 bar, the lower the activation time the higher CO2 adsorption capacity and a ranking ωeq(AC20)>ωeq(AC40)>ωeq(AC60) can be exactly defined when T= 293 K. This result can be likely ascribed to a narrower pore size distribution of the AC20 sample, whose smaller pores are more effective for CO2 capture at higher temperature and lower CO2 pressure, the latter representing operating conditions of major interest for decarbonation of a flue-gas effluent. Moreover, the experimental results obtained from dynamic tests confirm the results derived from the batch tests in terms of CO2 adsorption capacity. It is important to highlight that the adsorption of N2 on the synthesized AC samples can be considered negligible. Finally, the importance of a proper analysis of characterization data and adsorption experimental results is highlighted for a correct assessment of CO2 removal performances of activated carbons at different CO2 pressure and operating temperature.
Resumo:
Background: Self-rated health is a subjective measure that has been related to indicators such as mortality, morbidity, functional capacity, and the use of health services. In Spain, there are few longitudinal studies associating self-rated health with hospital services use. The purpose of this study is to analyze the association between self-rated health and socioeconomic, demographic, and health variables, and the use of hospital services among the general population in the Region of Valencia, Spain. Methods: Longitudinal study of 5,275 adults who were included in the 2005 Region of Valencia Health Survey and linked to the Minimum Hospital Data Set between 2006 and 2009. Logistic regression models were used to calculate the odds ratios between use of hospital services and self-rated health, sex, age, educational level, employment status, income, country of birth, chronic conditions, disability and previous use of hospital services. Results: By the end of a 4-year follow-up period, 1,184 participants (22.4 %) had used hospital services. Use of hospital services was associated with poor self-rated health among both men and women. In men, it was also associated with unemployment, low income, and the presence of a chronic disease. In women, it was associated with low educational level, the presence of a disability, previous hospital services use, and the presence of chronic disease. Interactions were detected between self-rated health and chronic disease in men and between self-rated health and educational level in women. Conclusions: Self-rated health acts as a predictor of hospital services use. Various health and socioeconomic variables provide additional predictive capacity. Interactions were detected between self-rated health and other variables that may reflect different complex predictive models, by gender.
Resumo:
The remediation of paracetamol (PA), an emerging contaminant frequently found in wastewater treatment plants, has been studied in the low concentration range (0.3–10 mg L−1) using as adsorbent a biomass-derived activated carbon. PA uptake of up to 100 mg g−1 over the activated carbon has been obtained, with the adsorption isotherms being fairly explained by the Langmuir model. The application of Reichemberg and the Vermeulen equations to the batch kinetics experiments allowed estimating homogeneous and heterogeneous diffusion coefficients, reflecting the dependence of diffusion with the surface coverage of PA. A series of rapid small-scale column tests were carried out to determine the breakthrough curves under different operational conditions (temperature, PA concentration, flow rate, bed length). The suitability of the proposed adsorbent for the remediation of PA in fixed-bed adsorption was proven by the high PA adsorption capacity along with the fast adsorption and the reduced height of the mass transfer zone of the columns. We have demonstrated that, thanks to the use of the heterogeneous diffusion coefficient, the proposed mathematical approach for the numerical solution to the mass balance of the column provides a reliable description of the breakthrough profiles and the design parameters, being much more accurate than models based in the classical linear driving force.