3 resultados para Homo videns

em Universidad de Alicante


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les sols argileux restent dominants dans la région de Tessala (Sidi Bel Abbes) connue pour son relief érodé et accidenté où les pentes supérieures à 12% dominent. L’utilisation encore traditionnelle et irréfléchie de ces types de sols contribue à l’accélération des phénomènes d’érosion et de dessèchement agissant directement sur la végétation. Une connaissance des principales propriétés de ces sols permettra de maîtriser leurs caractéristiques physiques sources de contraintes dans leur exploitation et mise en valeur. Une maîtrise de ces éléments permettrait d’identifier des zones homo-écologiques. Il sera alors possible de travailler sur des unités physico-écologiques de mise en valeur et d’exploitation intégrée des différents types de sols. La végétation et les paramètres physiques analysés permettront de confirmer ou d’infirmer les unités de gestion préalablement déterminées. La superposition des ces zones climatique, biologique et édaphique dégagera des entités de mise en valeur claires. Une proposition d’occupation des sols selon leurs potentialités axées sur des techniques d’amélioration des caractéristiques qui constituent des entraves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Apart from reflecting modern human dental variation, differences in dental size among populations provide a means for studying continuous evolutionary processes and their mechanisms. Dental wear, on the other hand, has been widely used to infer dietary adaptations and variability among or within diverse ancient human populations. Few such studies have focused on modern foragers and farmers, however, and diverse methods have been used. This research aimed to apply a single, standardized, and systematic quantitative procedure to measure dental size and dentin exposure in order to analyze differences among several hunter-gatherer and agricultural populations from various environments and geographic origins. In particular, we focused on sexual dimorphism and intergroup differences in the upper and lower first molars. Results indicated no sexual dimorphism in molar size and wear within the studied populations. Despite the great ethnographic variation in subsistence strategies among these populations, our findings suggest that differences in sexual division of labor do not affect dietary wear patterns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electronic structure of isolated finite graphene nanoribbons is investigated by solving, at the Hartree-Fock (HF) level, the Pariser, Parr and Pople (PPP) many-body Hamiltonian. The study is mainly focused on 7-AGNR and 13-AGNR (Armchair Graphene Nano-Ribbons), whose electronic structures have been recently experimentally investigated. Only paramagnetic solutions are considered. The characteristics of the forbidden gap are studied as a function of the ribbon length. For a 7-AGNR, the gap monotonically decreases from a maximum value of ~6.5 eV for short nanoribbons to a very small value of ~0.12 eV for the longer calculated systems. Gap edges are defined by molecular orbitals that are spatially localized near the nanoribbon extremes, that is, near both zig-zag edges. On the other hand, two delocalized orbitals define a much larger gap of about 5 eV. Conductance measurements report a somewhat smaller gap of ~3 eV. The small real gap lies in the middle of the one given by extended states and has been observed by STM and reproduced by DFT calculations. On the other hand, the length dependence of the gap is not monotonous for a 13-AGNR. It decreases initially but sharply increases for lengths beyond 30 Å remaining almost constant thereafter at a value of ~2.1 eV. Two additional states localized at the nanoribbon extremes show up at energies 0.31 eV below the HOMO (Highest Occupied Molecular Orbital) and above the LUMO (Lowest Unoccupied Molecular Orbital). These numbers compare favorably with those recently obtained by means of STS for a 13-AGNR sustained by a gold surface, namely 1.4 eV for the energy gap and 0.4 eV for the position of localized band edges. We show that the important differences between 7- and 13-AGNR should be ascribed to the charge rearrangement near the zig-zag edges obtained in our calculations for ribbons longer than 30 Å, a feature that does not show up for a 7-AGNR no matter its length.