2 resultados para Historically Black Colleges and Universities

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sea level variation (SLVtotal) is the sum of two major contributions: steric and mass-induced. The steric SLVsteric is that resulting from the thermal and salinity changes in a given water column. It only involves volume change, hence has no gravitational effect. The mass-induced SLVmass, on the other hand, arises from adding or subtracting water mass to or from the water column and has direct gravitational signature. We examine the closure of the seasonal SLV budget and estimate the relative importance of the two contributions in the Mediterranean Sea as a function of time. We use ocean altimetry data (from TOPEX/Poseidon, Jason 1, ERS, and ENVISAT missions) to estimate SLVtotal, temperature, and salinity data (from the Estimating the Circulation and Climate of the Ocean ocean model) to estimate SLVsteric, and time variable gravity data (from Gravity Recovery and Climate Experiment (GRACE) Project, April 2002 to July 2004) to estimate SLVmass. We find that the annual cycle of SLVtotal in the Mediterranean is mainly driven by SLVsteric but moderately offset by SLVmass. The agreement between the seasonal SLVmass estimations from SLVtotal – SLVsteric and from GRACE is quite remarkable; the annual cycle reaches the maximum value in mid-February, almost half a cycle later than SLVtotal or SLVsteric, which peak by mid-October and mid-September, respectively. Thus, when sea level is rising (falling), the Mediterranean Sea is actually losing (gaining) mass. Furthermore, as SLVmass is balanced by vertical (precipitation minus evaporation, P–E) and horizontal (exchange of water with the Atlantic, Black Sea, and river runoff) mass fluxes, we compared it with the P–E determined from meteorological data to estimate the annual cycle of the horizontal flux.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study has been performed on the Cretaceous to Early Miocene succession of the Vrancea Nappe (Outer Carpathians, Romania), based on field reconstruction of the stratigraphic record, mineralogical-petrographic and geochemical analyses. Extra-basinal clastic supply and intra-basinal autochthonous deposits have been differentiated, appearing laterally inter-fingered and/or interbedded. The main clastic petrofacies consist of calcarenites, sub-litharenites, quartzarenites, sub-arkoses, and polygenic conglomerates derived from extra-basinal margins. An alternate internal and external provenance of the different supplies is the result of the paleogeographic re-organization of the basin/margins system due to tectonic activation and exhumation of rising areas. The intra-basinal deposits consist of black shales and siliceous sediments (silexites and cherty beds), evidencing major environmental changes in the Moldavidian Basin. Organic-matter-rich black shales were deposited during anoxic episodes related to sediment starvation and high nutrient influx due to paleogeographic isolation of the basin caused by plate drifting. The black shales display relatively high contents in sub-mature to mature, Type II lipidic organic matter (good oil and gas-prone source rocks) constituting a potentially active petroleum system. The intra-basinal siliceous sediments are related to oxic pelagic or hemipelagic environments under tectonic quiescence conditions although its increase in the Oligocene part of the succession can be correlated with volcanic supplies. The integration of all the data in the “progressive reorientation of convergence direction” Carpathian model, and their consideration in the framework of a foreland basin, led to propose some constrains on the paleogeographic-geodynamic evolutionary model of the Moldavidian Basin from the Late Cretaceous to the Burdigalian.