3 resultados para High-order harmonic generations

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the existence of nondiffracting Bessel surface plasmon polaritons (SPPs), advancing at either superluminal or subluminal phase velocities. These wave fields feature deep subwavelength FWHM, but are supported by high-order homogeneous SPPs of a metal/dielectric (MD) superlattice. The beam axis can be relocated to any MD interface, by interfering multiple converging SPPs with controlled phase matching. Dissipative effects in metals lead to a diffraction-free regime that is limited by the energy attenuation length. However, the ultra-localization of the diffracted wave field might still be maintained by more than one order of magnitude.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on a procedure to improve the resolution of far-field imaging by using a neighboring high-index medium that is coated with a left-handed metamaterial. The resulting plot can also exhibit an enhanced transmission by considering proper conditions to retract backscattering. Based on negative refraction, geometrical aberrations are considered in detail since they may cause a great impact in this sort of diffraction-unlimited imaging by reducing its resolution power. We employ a standard aberration analysis to refine the asymmetric configuration of metamaterial superlenses. We demonstrate that low-order centrosymmetric aberrations can be fully corrected for a given object plane. For subwavelength-resolution imaging, however, high-order aberrations become of relevance, which may be balanced with defocus. Not only the point spread function but also numerical simulations based on the finite-element method support our theoretical analysis, and subwavelength resolution is verified in the image plane.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

On a global level the population growth and increase of the middle class lead to a growing demand on material resources. The built environment has an enormous impact on this scarcity. In addition, a surplus of construction and demolition waste is a common problem. The construction industry claims to recycle 95% of this waste but this is in fact mainly downcycling. Towards the circular economy, the quality of reuse becomes of increasing importance. Buildings are material warehouses that can contribute to this high quality reuse. However, several aspects to achieve this are unknown and a need for more insight into the potential for high quality reuse of building materials exists. Therefore an instrument has been developed that determines the circularity of construction waste in order to maximise high quality reuse. The instrument is based on three principles: ‘product and material flows in the end of life phase’, ‘future value of secondary materials and products’ and ‘the success of repetition in a new life cycle’. These principles are further divided into a number of criteria to which values and weighting factors are assigned. A degree of circularity can then be determined as a percentage. A case study for a typical 70s building is carried out. For concrete, the circularity is increased from 25% to 50% by mapping out the potential for high quality reuse. During the development of the instrument it was clarified that some criteria are difficult to measure. Accurate and reliable data are limited and assumptions had to be made. To increase the reliability of the instrument, experts have reviewed the instrument several times. In the long-term, the instrument can be used as a tool for quantitative research to reduce the amount of construction and demolition waste and contribute to the reduction of raw material scarcity.