6 resultados para High-Dimensional Space Geometrical Informatics (HDSGI)

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subpixel techniques are commonly used to increase the spatial resolution in tracking tasks. Object tracking with targets of known shape permits obtaining information about object position and orientation in the three-dimensional space. A proper selection of the target shape allows us to determine its position inside a plane and its angular and azimuthal orientation under certain limits. Our proposal is demonstrated both numerical and experimentally and provides an increase the accuracy of more than one order of magnitude compared to the nominal resolution of the sensor. The experiment has been performed with a high-speed camera, which simultaneously provides high spatial and temporal resolution, so it may be interesting for some applications where this kind of targets can be attached, such as vibration monitoring and structural analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, new computers generation provides a high performance that enables to build computationally expensive computer vision applications applied to mobile robotics. Building a map of the environment is a common task of a robot and is an essential part to allow the robots to move through these environments. Traditionally, mobile robots used a combination of several sensors from different technologies. Lasers, sonars and contact sensors have been typically used in any mobile robotic architecture, however color cameras are an important sensor due to we want the robots to use the same information that humans to sense and move through the different environments. Color cameras are cheap and flexible but a lot of work need to be done to give robots enough visual understanding of the scenes. Computer vision algorithms are computational complex problems but nowadays robots have access to different and powerful architectures that can be used for mobile robotics purposes. The advent of low-cost RGB-D sensors like Microsoft Kinect which provide 3D colored point clouds at high frame rates made the computer vision even more relevant in the mobile robotics field. The combination of visual and 3D data allows the systems to use both computer vision and 3D processing and therefore to be aware of more details of the surrounding environment. The research described in this thesis was motivated by the need of scene mapping. Being aware of the surrounding environment is a key feature in many mobile robotics applications from simple robotic navigation to complex surveillance applications. In addition, the acquisition of a 3D model of the scenes is useful in many areas as video games scene modeling where well-known places are reconstructed and added to game systems or advertising where once you get the 3D model of one room the system can add furniture pieces using augmented reality techniques. In this thesis we perform an experimental study of the state-of-the-art registration methods to find which one fits better to our scene mapping purposes. Different methods are tested and analyzed on different scene distributions of visual and geometry appearance. In addition, this thesis proposes two methods for 3d data compression and representation of 3D maps. Our 3D representation proposal is based on the use of Growing Neural Gas (GNG) method. This Self-Organizing Maps (SOMs) has been successfully used for clustering, pattern recognition and topology representation of various kind of data. Until now, Self-Organizing Maps have been primarily computed offline and their application in 3D data has mainly focused on free noise models without considering time constraints. Self-organising neural models have the ability to provide a good representation of the input space. In particular, the Growing Neural Gas (GNG) is a suitable model because of its flexibility, rapid adaptation and excellent quality of representation. However, this type of learning is time consuming, specially for high-dimensional input data. Since real applications often work under time constraints, it is necessary to adapt the learning process in order to complete it in a predefined time. This thesis proposes a hardware implementation leveraging the computing power of modern GPUs which takes advantage of a new paradigm coined as General-Purpose Computing on Graphics Processing Units (GPGPU). Our proposed geometrical 3D compression method seeks to reduce the 3D information using plane detection as basic structure to compress the data. This is due to our target environments are man-made and therefore there are a lot of points that belong to a plane surface. Our proposed method is able to get good compression results in those man-made scenarios. The detected and compressed planes can be also used in other applications as surface reconstruction or plane-based registration algorithms. Finally, we have also demonstrated the goodness of the GPU technologies getting a high performance implementation of a CAD/CAM common technique called Virtual Digitizing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-organising neural models have the ability to provide a good representation of the input space. In particular the Growing Neural Gas (GNG) is a suitable model because of its flexibility, rapid adaptation and excellent quality of representation. However, this type of learning is time-consuming, especially for high-dimensional input data. Since real applications often work under time constraints, it is necessary to adapt the learning process in order to complete it in a predefined time. This paper proposes a Graphics Processing Unit (GPU) parallel implementation of the GNG with Compute Unified Device Architecture (CUDA). In contrast to existing algorithms, the proposed GPU implementation allows the acceleration of the learning process keeping a good quality of representation. Comparative experiments using iterative, parallel and hybrid implementations are carried out to demonstrate the effectiveness of CUDA implementation. The results show that GNG learning with the proposed implementation achieves a speed-up of 6× compared with the single-threaded CPU implementation. GPU implementation has also been applied to a real application with time constraints: acceleration of 3D scene reconstruction for egomotion, in order to validate the proposal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many classification problems, it is necessary to consider the specific location of an n-dimensional space from which features have been calculated. For example, considering the location of features extracted from specific areas of a two-dimensional space, as an image, could improve the understanding of a scene for a video surveillance system. In the same way, the same features extracted from different locations could mean different actions for a 3D HCI system. In this paper, we present a self-organizing feature map able to preserve the topology of locations of an n-dimensional space in which the vector of features have been extracted. The main contribution is to implicitly preserving the topology of the original space because considering the locations of the extracted features and their topology could ease the solution to certain problems. Specifically, the paper proposes the n-dimensional constrained self-organizing map preserving the input topology (nD-SOM-PINT). Features in adjacent areas of the n-dimensional space, used to extract the feature vectors, are explicitly in adjacent areas of the nD-SOM-PINT constraining the neural network structure and learning. As a study case, the neural network has been instantiate to represent and classify features as trajectories extracted from a sequence of images into a high level of semantic understanding. Experiments have been thoroughly carried out using the CAVIAR datasets (Corridor, Frontal and Inria) taken into account the global behaviour of an individual in order to validate the ability to preserve the topology of the two-dimensional space to obtain high-performance classification for trajectory classification in contrast of non-considering the location of features. Moreover, a brief example has been included to focus on validate the nD-SOM-PINT proposal in other domain than the individual trajectory. Results confirm the high accuracy of the nD-SOM-PINT outperforming previous methods aimed to classify the same datasets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematical morphology addresses the problem of describing shapes in an n-dimensional space using the concepts of set theory. A series of standardized morphological operations are defined, and they are applied to the shapes to transform them using another shape called the structuring element. In an industrial environment, the process of manufacturing a piece is based on the manipulation of a primitive object via contact with a tool that transforms the object progressively to obtain the desired design. The analogy with the morphological operation of erosion is obvious. Nevertheless, few references about the relation between the morphological operations and the process of design and manufacturing can be found. The non-deterministic nature of classic mathematical morphology makes it very difficult to adapt their basic operations to the dynamics of concepts such as the ordered trajectory. A new geometric model is presented, inspired by the classic morphological paradigm, which can define objects and apply morphological operations that transform these objects. The model specializes in classic morphological operations, providing them with the determinism inherent in dynamic processes that require an order of application, as is the case for designing and manufacturing objects in professional computer-aided design and manufacturing (CAD/CAM) environments. The operators are boundary-based so that only the points in the frontier are handled. As a consequence, the process is more efficient and more suitable for use in CAD/CAM systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work the usefulness of qualitatively studying and drawing three-dimensional temperature–composition diagrams for ternary systems is pointed out to understand and interpret the particular behavior of the liquid–vapour equilibrium of non-ideal ternary systems. Several examples have been used in order to highlight the interest and the possibilities of this tool, which should be an interesting support not only for lecturers, but also for researchers interested in experimental equilibrium data determination.